COMMITTENTE:

RETE FERROVIARIA ITALIANA S.P.A. DIREZIONE TERRITORIALE FIRENZE S.O. INGEGNERIA

SOGGETTO TECNICO: RFI - D.T.P. FIRENZE - S.O. INGEGNERIA

PROGETTAZIONE:

File:

LE.GE.CO S.P.A.

Sede Legale:Località Pocaia n. 33 -52035 Monterchi (SR)

Cod. fiscale e p.IVA: 01221000514

TEL/FAX: 075/8520045 e.mail: cestello@legeco.com PEC: legenerali@pec.legeco.com

PROGETTO ESECUTIVO

Sostituzione delle travate metalliche Ponte T. Acquerta Km 284+732 Linea Cecina - Volterra

		1									
		Foglio	1 di 173								
PROG	ETT	E FUNZ.	NUMERAZ.								
1 8	2	7 1 7		0 0 1	Р	E	R S P N	0	0 0	0	E 0 0 6
	Rev.	Descrizio	ne	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato	Data
atore		1^ emissio	one	Geol. M.Lepri		Geol. M.Lep	ri	Geol. M.Lepri	_	Ing. M. Lepri	
Appaltatore											
S.p.A.						Ing. G.Tornato	ra	Arch. F.Ciolfi		Ing. G.Ticci	
R.F.I. S											
	SIZI		L	INEA 4 6 3		TECN. A 7 9 6	1 🖂	ME DOC.	NUMER E 0	AZ.	
Verificato e trasmesso Data Convalidato Data Archiviato Data										ta	

Indice

1.	premessa	2
2	normativa di riferimento	3
3	lavori consultati	4
4	localizzazione dell'area	5
5	inquadramento geografico e morfologico	6
6	inquadramento geologico generale	7
	6.1 carta geologica	8
	6.1.1 depositi alluvionali terrazzati (bnb)	
	6.1.2 depositi alluvionali recenti, terrazzati e non terrazzati (bna)	10
	6.1.3 depositi alluvionali recenti (b)	10
7	inquadramento idrografico ed idrogeologico	11
8	indagini geognostiche	13
	8.1 sondaggi a carotaggio continuo	14
	8.2 prove s.p.t	
	8.3 prova c.p.t	
^	8.4 prove geotecniche di laboratorio	
9.	modelli geologico e geotecnico del sito	
10.	liquefazione dei terreni	25
	10.1 profondità media stagionale della falda	25
	10.2 distribuzione granulometrica	25
11.	tettonica e sismicita'	27
	11.1 inquadramento sismo-tettonico	27
12.	caratteristiche sismiche del territorio	28
13.	zonazione sismica nazionale e regionale	30
14.	pericolosita' sismica	33
15.	valutazione della risposta sismica locale	36
	15.1 risposta sismica locale (rsl)	36
	15.2 vs30 e categoria di suolo di fondazione	36
16.	vincoli geologici	39
17.	conclusioni	44
18.	allegati:	47

1. PREMESSA

Il presente lavoro ha come finalità la definizione di dettaglio dei lineamenti geologici, geomorfologici, geotecnici e sismici dei terreni interessati, a supporto del "Progetto Esecutivo linea Cecina - Volterra - Fosso Acquerta (LI) al Km 284+732".

Lo studio è stato redatto con l'ausilio di indagini geognostiche, geotecniche e geofisiche opportunamente programmate, nonché di dati bibliografici e delle osservazioni dirette dei luoghi.

Verranno esposte le condizioni geologiche, tettoniche, geomorfologiche ed idrogeologiche sia a carattere generale sia di stretto interesse progettuale, illustrando le evidenze dell'intera campagna geognostica eseguita e proponendo un modello geologico del sito; inoltre verrà definita la sismicità dell'area utilizzando il metodo speditivo.

Le indagini ed il presente lavoro sono stati condotti in conformità con quanto prescritto dalle norme del Decreto del Ministero LL. PP. 11-03-88 e successive integrazioni ed alle NTC/2018.

A corredo del presente lavoro, per una più completa esposizione degli argomenti trattati, si allegano i seguenti elaborati:

- Corografia in scala 1:10.000	All. 1
- Carta geologica in scala 1:10.000	All. 2
- Ubicazioni indagini in scala 1:1000	All. 3
- Sezione geologica in scala 1:200	All. 4
- Tabulati di calcolo delle prove penetrometriche	All. 5
- Rapporto di prova indagini geognostiche	All. 6

2 NORMATIVA DI RIFERIMENTO

Le scelte progettuali sono state adeguate alla vigente normativa ed in particolare alle seguenti leggi e disposizioni:

- D.M. 17 gennaio 2018 Aggiornamento delle << Norme tecniche per le costruzioni>>;
- D.M. 14 gennaio 2008 Norme tecniche per le costruzioni;
- Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al Decreto Ministeriale 14 gennaio 2008;
- DGR n. 2129 dell'11 luglio 2014 e la L.R. n. 33/2015;
- OPCM 3274 del 2003.

3 LAVORI CONSULTATI

Ai fini dell'inquadramento geologico generale del territorio, dei terreni interessati dalla Progettazione definitiva sulla linea Cecina - Volterra - Fosso Acquerta (LI) al Km 284+732, è stata consultata la cartografia geologica esistente, ed i lavori scientifici disponibili e pubblicati, riguardanti il sito di progetto e le zone circostanti, con particolare riferimento a:

- Progetto definitivo Adeguamento del ponte ferroviario sulla linea Cecina-Saline sul torrente
 Acquerta relazione geologica, geotecnica e sismica;
- Progetto definitivo Comune di Cecina relazione geologica
- P.R.G.C. Piano Strutturale Provincia di Livorno Studio geologico relazione tecnica Carta geologica foglio 055 della carta geologica D'Italia ISPRA;
- P.A.I. Autorità di Bacino Toscana Costa;
- http://www502.regione.toscana.it/geoscopio

4 LOCALIZZAZIONE DELL'AREA

L'area ricade a sud-ovest del Comune di Riparbella, lungo il corso del Fiume Cecina.

Le coordinate geografiche del sito in WGS 84, sono:

Latitudine: 43.329533 Longitudine: 10.527770

Le coordinate geografiche del sito in ED50, sono:

Latitudine: 43.330507 Longitudine: 10.528762

Figura 1 - Ortofoto dell'area tratta da Google Earth

5 INQUADRAMENTO GEOGRAFICO E MORFOLOGICO

Il sito esaminato si pone ad una quota altimetrica media di circa 11 m s.l.m..

Nell'allegato n. 1 si riporta un estratto della Carta Tecnica Regionale della Regione Toscana, in scala 1:10.000, con indicata l'ubicazione dell'area in esame.

L'area in esame, in particolare, è collocata lungo il Torrente Acquerta che identifica il limite tra il Comune di Cecina ad ovest e quello di Riparbella ad est.

Il territorio del Comune di Cecina si estende dal mare alla fascia pedecollinare di Collemezzano-i Pianacci la cui porzione mediana è attraversata trasversalmente dal corso del Fiume Cecina; in particolare, dal punto di vista tettonico, appartiene al settore occidentale dei rilievi collinari di Castellina Marittima, definiti "Monti di Castellina" e dei Monti della Gherardesca, rappresentanti un tratto della catena collisionale appenninica generata dalla collisione del margine continentale europeo e africano, avvenuta nell'intervallo Oligocene superiore-Miocene inferiore.

Dal punto di vista geomorfologico la zona in studio è segnata sia dalle lineazioni tettoniche sia dai corsi d'acqua che ne condizionano anche l'aspetto e le caratteristiche morfologiche.

L'area non presenta problematiche geomorfologiche in atto e risulta stabile per posizione. Le pendenze risultano mediamente contenute entro il 5%.

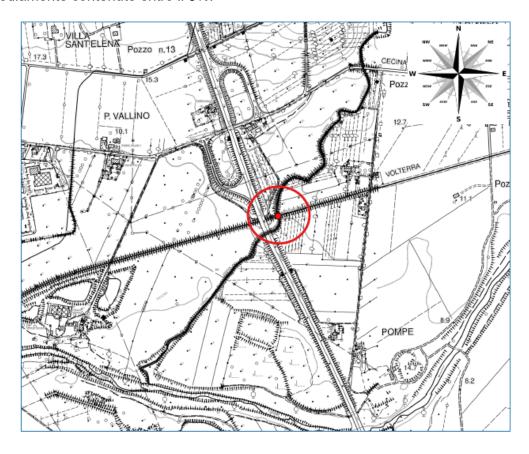


Figura 2 – Stralcio planimetrico della carta tecnica regionale

6 INQUADRAMENTO GEOLOGICO GENERALE

L'inquadramento geologico della porzione di territorio tra il Comune di Cecina e quello di Riparbella non può prescindere dall'analisi degli elementi geologici tradizionali che, a partire dall'individuazione delle differenti unità strutturali e dalla distinzione delle unità litostratigrafiche del substrato roccioso e dei depositi superficiali affioranti, caratterizzano l'assetto tettonico del distretto geologico in esame.

Le formazioni che costituiscono il territorio preso in esame sono legate ad una lunga e complessa storia geologica a cui è stata sottoposta l'area.

La forte distensione che caratterizza nel Neogene il versante tirrenico dell'Appennino settentrionale provoca due fenomeni che si susseguono nel tempo: il primo è una delaminazione della crosta superiore ad opera di faglie dirette a basso angolo ed a geometria complessa; il secondo è lo sprofondamento di un sistema di fosse tettoniche, sub parallele, allungate in direzione Nord Ovest-Sud Est, la cui apertura non è contemporanea ma è proceduta gradualmente da Occidente ad Oriente.

In linea generale nell'area oggetto di studio è stato possibile distinguere tre principali Domini di provenienza:

- <u>Dominio Ligure</u>: corrispondente ad un bacino oceanico, costituito da basamento di rocce magmatiche basiche ed ultrabasiche, riferibili all'Unità Ofiolitica, cui si sovrappone una copertura sedimentaria di mare profondo;
 - In particolare, i depositi appartenenti al Dominio Ligure sono caratterizzati da una complessa situazione strutturale, dovuta almeno a tre fasi deformative duttili ed alle successive deformazioni fragili.

Al suo interno è possibile riscontare Serpentiniti, comunemente interpretate come rocce di mantello legate all'apertura del bacino oceanico giurassico Ligure-Piemontese, che insieme ai Gabbri costituiscono il basamento della sequenza ofiolitica.

Sono ampiamente diffusi anche i Basalti, presenti come basalti massicci, filoniani ed a pillows, con l'aggiunta di brecce di pillows; le Argille a Palombini che danno generalmente origine ad una coltre pedogenetica prevalentemente argillosa, spessa alcuni metri, caratterizzata da scarse proprietà geotecniche. La formazione è costituita da un'alternanza di strati torbiditici calcarei, calcareo-marnosi, calcareo-silicei ed emipelagici privi di CaCO3.

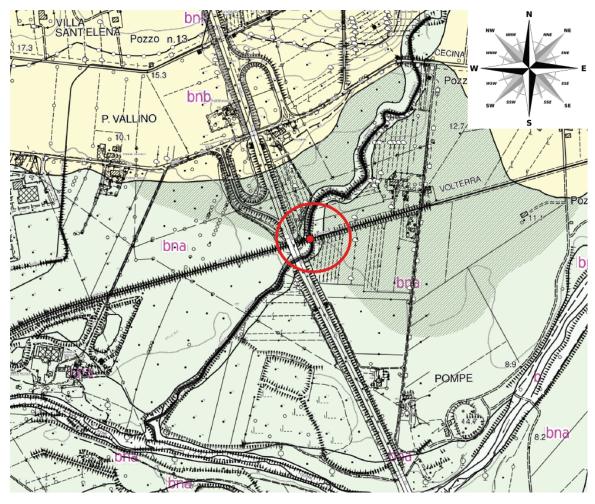
- <u>Dominio Austroalpino</u>: costituito da un basamento sialico, metamorfico e da una copertura che, verso ovest passa alla copertura ligure, e verso est alla copertura del Dominio Toscano;
- <u>Dominio Toscano</u>: costituito da un basamento sialico metamorfico di età paleozoica e da una copertura mesozoico-terziaria.

Questi tre principali domini, durante la fase di chiusura dell'oceano ligure-piemontese e la successiva collisione continentale, hanno subito un raccorciamento ed una traslazione da SW verso NE.

Ai sopracitati Domini si associa il <u>Complesso Neoautoctono Toscano</u> di cui fanno parte tutte le unità costituite da sedimenti lacustri e marini di età mio-pliocenica e pleistocenica che non hanno subito movimenti di traslazione orizzontale. Questo si divide a sua volta in:

- Depositi del Neoautoctono Toscano sin-rift, ulteriormente suddivisi in:
 - o depositi miocenici;
 - o depositi plio-pleistocenici;
- Depositi del Neoautoctono Toscano post-rift, pleistocenici;

Le depressioni vallive di tutta l'area, infine, sono interessate da successioni di <u>depositi quaternari recenti</u> <u>ed attuali</u> consistenti in alluvioni fluviali terrazzate in vari ordini che bordano a varie altezze le valli principali dell'area.


6.1 Carta geologica

Il rilievo geologico rappresenta una delle indagini più importanti per la definizione delle caratteristiche geologiche e stratigrafiche di un sito; nel presente lavoro, le osservazioni di superficie unitamente ai dati bibliografici esistenti, hanno consentito di redigere una carta geologica in scala 1:10.000 (AII.2) sia dell'area interessata dall'opera in esame sia delle zone limitrofe, ed hanno permesso di definire i rapporti stratigrafico-strutturali intercorrenti tra i terreni di fondazione e le altre formazioni presenti.

In particolare, in allegato 2 si è fatto riferimento al Geoportale della Regione Toscana.

La legenda riporta le Unità litologiche in successione cronostratigrafica, partendo dal basso con quelle più antiche del substrato roccioso fino alle più recenti dei depositi superficiali; nella carta geologica sono rappresentati i seguenti litotipi:

- Depositi alluvionali terrazzati (bnb) Pleistocene medio superiore;
- Depositi alluvionali recenti, terrazzati e non terrazzati (bna) Olocene;
- Depositi alluvionali attuali (b) Olocene;

Legenda

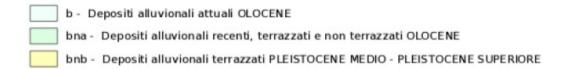


Figura 3 – Stralcio dell'Allegato n.2. – Carta Geologica

6.1.1 Depositi alluvionali terrazzati (bnb)

Si fa riferimento alle Sabbie rosse di Val di Gori, costituito da sabbie di colore rosso vivo con notevole scheletro argilloso, assetto massivo e ricche in ciottoli sparsi. La deposizione sembra essere avvenuta nella fase glaciale di Riss. L'ambiente deposizionale è continentale con azione prevalente eolica o colluviale, nonché circoscritte esondazioni torrentizie evidenziate dalle lenti ciottolose.

Gli spessori di questi depositi sono assai variabili con media di 5 – 10 m.

6.1.2 Depositi alluvionali recenti, terrazzati e non terrazzati (bna)

I depositi alluvionali terrazzati sono depositi alluvionali reincisi, del Quaternario, affioranti prevalentemente lungo le valli del Fiume Cecina e dei suoi affluenti principali, rinvenibili in generale al fondo delle valli fluviali ed estesi a tutta la fascia costiera di retro-duna.

Sono costituiti da ciottolami poligenici e/o ghiaie miste a lenti di sabbia ciottolosa e limo, giacenti a varie quote sui terrazzi, la cui età è problematica per la rarità dei reperti fossili ritrovati nei depositi fluviali. I clasti sono localmente imbricati ed hanno dimensioni centimetriche fino a decimetriche.

6.1.3 Depositi alluvionali recenti (b)

I depositi alluvionali recenti affiorano in corrispondenza dei corsi d'acqua più importanti e dei rispettivi tributari. Sono generalmente costituiti da sabbie e ciottoli eterometrici di natura eterogenea, con subordinati limi.

L'area in studio, in particolare, ricade interamente all'interno dei <u>Depositi alluvionali recenti terrazzati e</u> non terrazzati (bna).

7 INQUADRAMENTO IDROGRAFICO ED IDROGEOLOGICO

Il sistema idrografico principale della Val di Cecina è costituito appunto dal Fiume Cecina e dai suoi affluenti principali, quali il Torrente Acquerta (d'interesse progettuale), il Torrente le Botra ed il Torrente Rialdo.

In generale questi corsi d'acqua hanno un'asta relativamente breve con una zona montana caratterizzata da un reticolo fitto e fortemente ramificato tipico dei terreni coesivi e fragili.

Il Torrente Acquerta è caratterizzato dall'avere un regime di tipo torrentizio con portate molto variabili e con frequenti fenomeni di stress idrico rappresentato da periodi di lunghe magre durante i mesi più caldi e abbondanti piene a partire dall'autunno inoltrato e nella stagione invernale.

Dalle informazioni relative alle note idrogeologiche, desunte dai dati bibliografici esistenti e dalla distribuzione dei pozzi all'interno del territorio esaminato, è possibile affermare che i principali acquiferi sono localizzati all'interno delle rocce ofiolitiche ed in corrispondenza dei depositi alluvionali nella valle del Fiume Cecina.

La falda nel sito d'interesse progettuale si stima possa oscillare tra -1,00m a -5,00m a secondo del periodo stagionale, facendo riferimento ai dati ASA 2009 la falda freatica si pone nel periodo di magra tra -1.5 e 3.00m e nel periodo di morbida tra -1.5 e 0.00m s.l.m. (Fig.5).

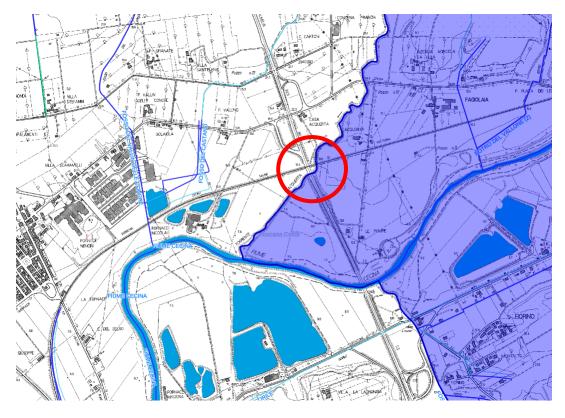


Figura 4 - Ortofoto con reticolo idrografico principale reperita da http://www502.regione.toscana.it/geoscopio/idrogeol.html

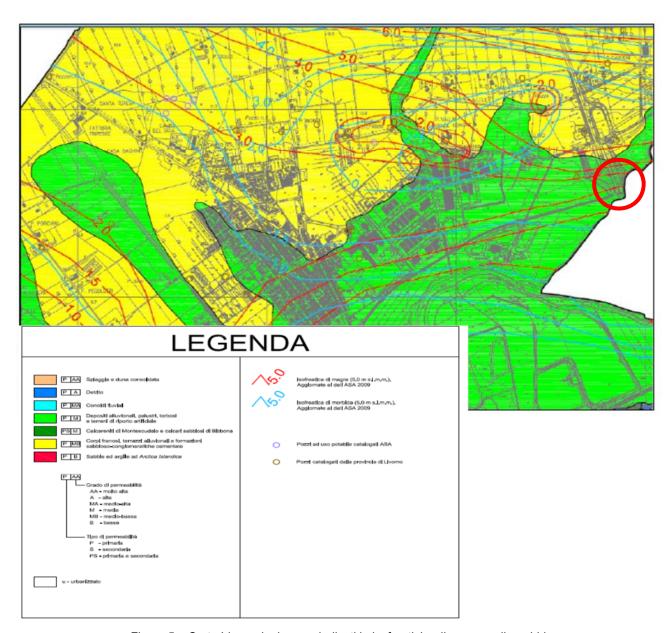


Figura 5 – Carta Idrogeologica con indicati le isofreatiche di magra e di morbida

8 INDAGINI GEOGNOSTICHE

Nel ponte ferroviario sulla linea Cecina-Saline sul Torrente Acquerta è stata eseguita una campagna geognostica con l'esecuzione di un sondaggio e prove in sito così come riportato in Figura 5. Inoltre, durante i sondaggi sono stati prelevati campioni di terreno indisturbati per la caratterizzazione geotecnica in laboratorio.

Nello specifico la campagna geognostica ha previsto le seguenti attività.

- Esecuzione di n. 1 sondaggio a carotaggio continuo a sviluppo verticale, denominati S1pz, spinto ad una profondità di 30 m. Il punto di indagine è stato attrezzato con stazione piezometrica di tipo Norton.
- Durante la fase di perforazione sono state eseguite n.3 prove penetrometriche dinamiche S.P.T.
 in avanzamento di foro ed il prelievo di n° 4 campioni indisturbati.

Tutti i campioni sono stati destinati al laboratorio geotecnico per le seguenti determinazioni:

- o contenuto in acqua, peso di volume e peso di volume saturo;
- o caratteristiche fisiche volumetriche;
- o analisi granulometrica per stacciatura e sedimentazione;
- Inoltre dai campioni prelevati in sito sono stati confezionati i provini per l'esecuzione delle seguenti prove di laboratorio:
- o prova di taglio diretto;
- o prova ELL.;
- Esecuzione di n. 2 prove penetrometriche statiche meccaniche, spinte fino alla profondità di 12 m e denominate rispettivamente C.P.T.1 e C.P.T.2.
- Esecuzione di una prova geofisica M.A.S.W. per la determinazione della categoria di sottosuolo Vs30 ai sensi delle NTC 18.
- Esecuzione di una prova di sismica passiva a stazione singola HVSR.

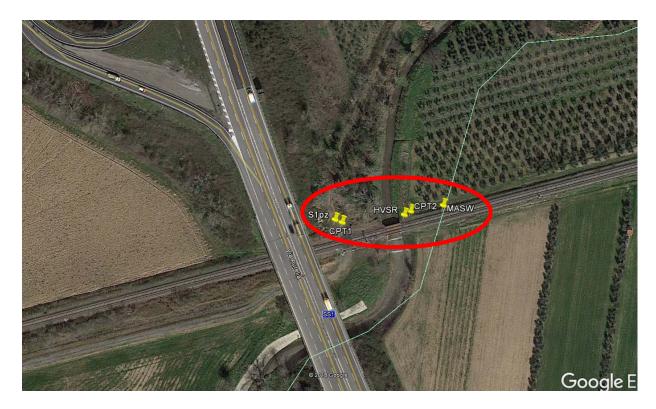


Figura 6 – Ubicazione delle attività eseguite nella campagna di indagine

8.1 Sondaggi a carotaggio continuo

Il sondaggio geognostico a carotaggio continuo ha permesso di ricostruire l'assetto stratigrafico del sottosuolo nonché l'individuazione di eventuali acquiferi.

Per il sondaggio geognostico viene riportato in modo sintetico lo schema stratigrafico con i relativi orizzonti litologici riscontrati.

SONDAGGIO S1pz

Le attività sviluppate lungo la verticale investigata sono sintetizzate in Tabella 1:

Tabella 1

	Sondaggio S1pz									
Profondità Sond. (m da p.c.)	S.P.T.	Camp. Ind./Rim.	Piezometro tipo Norton – cieco i primi 3m							
30,00	3	4	Х							

La stratigrafia emersa è schematizzata in Tabella 2; si rimanda al report indagini geognostiche per la trattazione completa (Allegato 6).

Tabella 2

Intervallo (m)	Descrizione litologica
0,00 - 1,00	Terreno da riporto costituito da ghiaie e sabbie di natura ofiolitica
1,00 - 2,60	Terreno da riporto costituito da limo sabbioso debolmente ghiaioso di colore marrone brunastro
2,60 - 3,50	Ghiaia fine, limoso sabbiosa e sabbia con ghiaia limosa di colore marrone
3,50 - 6,00	Limo sabbioso debolmente ghiaioso di colore marrone brunastro
6,00 - 6,70	Limo con ghiaia eterometrica, argilloso di colore marrone
6,70 - 7,00	Limo con argilla debolmente ghiaioso di colore marrone
7,00 - 7,90	Limo con ghiaia eterometrica, argilloso di colore marrone
7,90 - 9,10	Sabbia limosa di colore marrone
9,10 - 13,00	Ghiaia fine eterogenea, con sabbia limosa, matrice di colore marrone
13,00 - 14,20	Sabbia con ghiaia fine eterogenea limosa, di colore marrone
14,20 - 16,00	Limo sabbioso e con sabbia argillosa, debolmente ghiaioso, di colore marrone grigiastro
16,00 - 19,00	Ghiaia eterometrica e ciottoli, limosa debolmente sabbiosa, di colore marrone
19,00 - 20,00	Sabbia limosa di colore marrone
20,00 - 21,00	Limo con argilla sabbiosa e limo con sabbia argillosa di colore marrone grigiastro
21,00 - 21,20	Limo con argilla debolmente sabbioso di colore grigio azzurro
21,20 - 22,00	Limo con argilla sabbiosa e limo con sabbia argillosa di colore marrone grigiastro
22,00 - 23,00	Limo con argilla sabbiosa di colore grigio azzurro
23,00 - 26,10	Limo con argilla e argilloso sabbioso di colore grigio azzurro
26,10 - 26,60	Limo sabbioso argilloso di colore grigio verdastro
26,60 - 30,00	Sabbia limosa, con elementi ghiaiosi, di colore marrone con intervalli limoso argillosi di colore grigio azzurro

Il livello di falda misurato nella stazione piezometrica, nell'aprile 2014, si pone ad una quota di -6.65 m dal p.c..

È alquanto verosimile un innalzamento della falda di circa 1.5 m nel periodo di morbida. Si assume, quindi, un livello posto a profondità di -5.0 m dal p.c. attuale.

8.2 Prove S.P.T.

La prova SPT (Standard Penetration Test) consiste nella penetrazione di un campionatore tipo Raymond sul fondo del foro di sondaggio, per tre tratti successivi di 15 cm ciascuno.

L'indice della resistenza alla penetrazione, indicato con la sigla NSPT, risulta dal numero di colpi N necessari all'avanzamento di 30 cm relativi al secondo e terzo avanzamento (il primo tratto di infissione non viene considerato in quanto interessa una parte di terreno alterato in seguito alle operazioni di scavo).

Per un numero di colpi alla penetrazione superiore a 50 si assumono condizioni di rifiuto (Rif).

In Tabella 3 seguente si riportano i dati rilevati durante le prove SPT.

Tabella 3

Sondaggio	Profondità da p.c. (m)		NSPT		
Oorldaggio	r roronana da p.c. (m)	Tratto 1	Tratto 2	Tratto 3	1101 1
S1	15.50 – 15.57	R	-	-	R
S1	18.00 – 18.09	R	-	-	R
S1	23.00 – 23.45	16	27	22	49

Qui di seguito vengono riportate alcune correlazioni, tratte dalla letteratura geotecnica, utilizzate al fine di ricavare alcuni valori fisici e meccanici dei terreni riscontrati durante le perforazioni. Si precisa che i valori geotecnici ricavati dalle correlazioni sono indicativi in quanto le variabili (profondità, litologia ecc...), che entrano in gioco nella valutazione dei parametri, sono molteplici e non tutte facilmente controllabili.

• Densità relativa: determinata secondo le indicazioni riportate nella seguente tabella sia definendo con un aggettivo il grado di addensamento (Terzaghi-Peck) sia individuando il corrispondente valore numerico (Gibbs-Holtz).

NSPT	DENSITA' RELATIVA								
colpi/30 cm	Terzaghi-Peck (1948)	Gibbs-Holtz (1957)							
0-4	Sciolto	0-15 %							
4-10	Poco addensato	15-35 %							
10-30	Moderatamente addensato 35-65 %								
30-50	Addensato	65-85 %							

> 50	Molto addensato	85-100 %

• Angolo di attrito: determinato con il metodo Road Bridge Specification di seguito riportato.

$$\phi = 15 + \sqrt{15 \times N_{SPT}}$$

• Coesione non drenata:

la determinazione delle resistenze al taglio in termini di tensioni totali (cu) è stata eseguita in quei terreni coesivi caratterizzati da una plasticità medio-bassa. I valori di resistenza al taglio sono stati determinati adottando la correlazione di Terzaghi & Peck, valida solo per le argille di media plasticità, in cui la coesione non drenata è calcolata in funzione del numero di colpi NSPT ed è espressa in kg/cm2.

$$Cu = 0.067 \times N_{SPT}$$

Peso di volume:

TERRENI GRANULARI (Terzaghi-Peck 1948/1967): correlazione valida per peso specifico del materiale (G) pari a circa 2,65 t/mc e per indici dei vuoti (e) variabile da 1 a 1/3.

Nspt	Ysat	Yd									
0	1,83	1,33	25	2,02	1,64	50	2,15	1,85	75	2,20	1,93
5	1,88	1,41	30	2,05	1,69	55	2,16	1,87	80	2,21	1,95
10	1,93	1,50	35	2,08	1,73	60	2,17	1,88	85	2,23	1,97
15	1,96	1,54	40	2,10	1,77	65	2,18	1,90	90	2,24	1,99
20	1,99	1,59	45	2,13	1,81	70	2,19	1,92	95	2,24	1,99

Dove:

Ysat [t/m³] = peso di volume saturo Yd [t/m³] = peso di volume secco

TERRENI COESIVI (Bowles 1982, Terzaghi-Peck 1948/1967): correlazione valida per peso specifico del materiale (G) pari a circa 2,70 t/mc.

Nspt	Ysat	W%	е	Nspt	Ysat	W%	E	Nspt	Ysat	W%	е
0	1,60	68	1,833	10	1,90	33	0,892	20	2,02	25	0,667
2	1,75	47	1,267	12	1,92	31	0,842	22	2,04	23	0,628
4	1,80	42	1,125	14	1,95	29	0,795	24	2,07	22	0,591
6	1,85	37	1,000	16	1,97	28	0,750	26	2,09	21	0,556
8	1,87	35	0,945	18	2,00	26	0,708	28	2,10	20	0,545

Dove:

Ysat [t/m³] = peso di volume saturo Yd [t/m³] = peso di volume secco W = umidità % e = indice vuoti

Nella tabella 4 si espongono i parametri geotecnici ricavati dalle correlazioni precedentemente illustrate ed integrate con parametri calcolati tramite il programma Dynamic probing della geostru s.r.l. i cui tabulati di calcolo sono stati inseriti in allegato 5.

Tabella 4 - Sintesi dei parametri geotecnici S1

Strato	Prof. Strato (m)	Nspt	Tipo	Gamma (t/m³)	Gamma Saturo (t/m³)	Fi (°)	Cu (Kg/cm²)	Modulo Edometrico (Kg/cm²)	Modulo Elastico (Kg/cm²)	Modulo Poisson (Kg/cm²)	Modulo di taglio G
1	15,5	50	Coesivo	2,47	2,7	0	3,38	229,4	500	0	0
2	18,5	50	Incoerente	2,24	-	42,39	0	130,17	504,73	0,25	2570,07
3	23,5	49	Coesivo	2,47	2,7	0	2,63	178,93	390	0	0

8.3 PROVA C.P.T.

La prova penetrometrica statica C.P.T. (Cone Penetration test) consiste nella misura della resistenza alla penetrazione di una punta conica standardizzata che viene infissa nel terreno con un martinetto meccanico o idraulico, per mezzo di una batteria di aste che avanzano a velocità costante pari a 20 mm/s con traiettoria di affondamento verticale. La punta possiede sensori in grado di acquisire in continuo la resistenza alla penetrazione e di conoscere le proprietà del terreno mediante le diagrafie dei parametri misurati.

Le prove penetrometriche eseguite, denominata CPT1 e CPT2, sono state spinte entrambe fino alla profondità di 12,00 m seguendo le modalità standard suggerite dall'A.G.I. (Associazione Geotecnica Italiana); in Allegato 6 la stima dei parametri geotecnici completa.

Di seguito si riportano i grafici dei risultati ottenuti per le due prove:

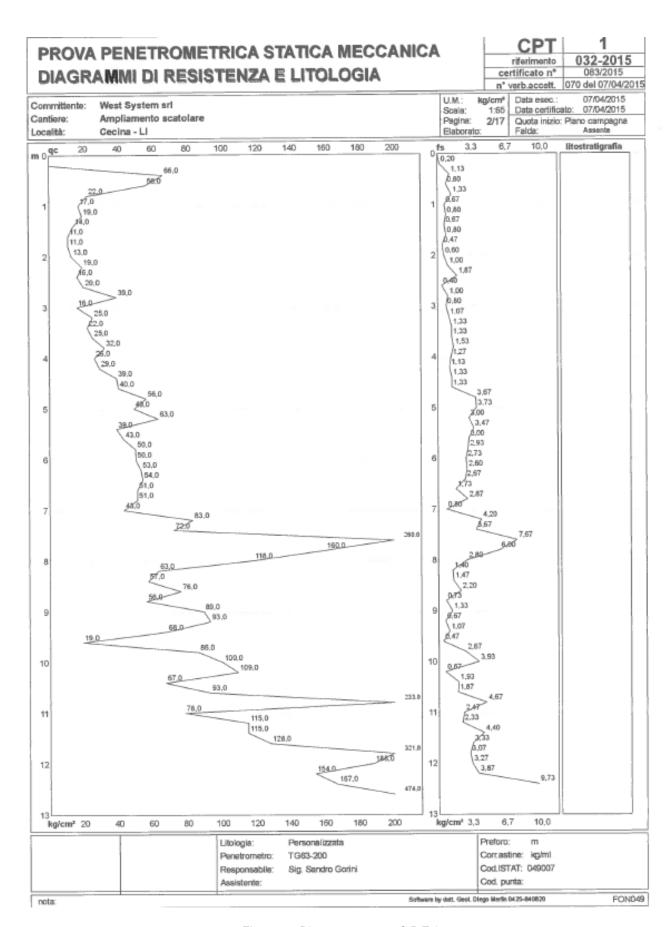


Figura 7 – Diagramma prova C.P.T.1

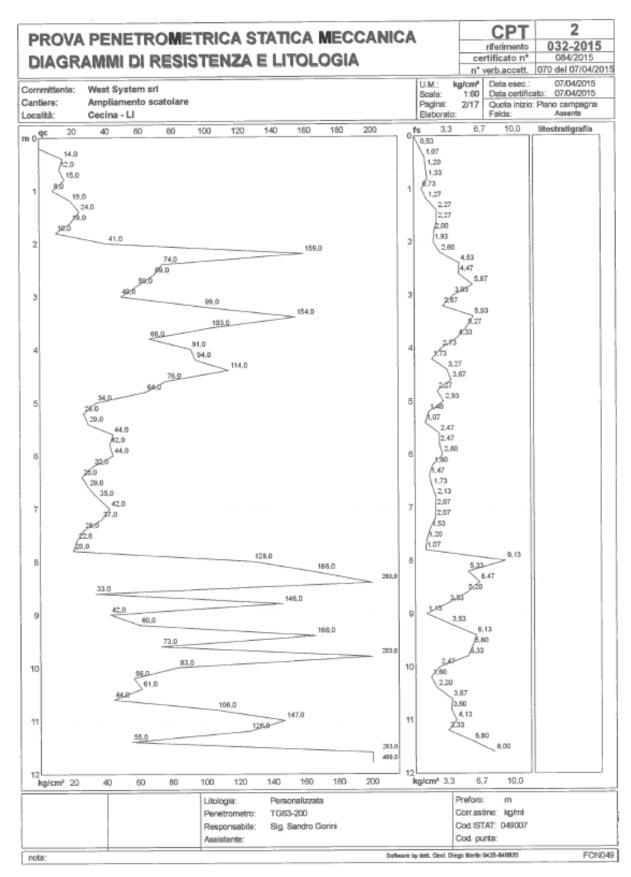


Figura 8 – Diagramma prova C.P.T.2

8.4 PROVE GEOTECNICHE DI LABORATORIO

Nel corso della perforazione dei sondaggi sono stati prelevati complessivamente n. 2 campioni indisturbati.

I campioni, prelevati durante la fase di perforazione, sono stati trasportati in laboratorio per essere sottoposti a prove geotecniche, atte a definire le principali caratteristiche fisiche e meccaniche dei terreni interessati dalle opere in progetto.

Le prove sono state organizzate in modo da ricavare le caratteristiche fisiche, granulometriche e di consistenza. Sono state altresì programmate in laboratorio delle prove al fine di determinare i parametri meccanici e le resistenze drenate (c', ϕ') .

Per i certificati di prova si rimanda al report indagini geognostiche (All.6).

Tabella 7 - Schema riassuntivo del prelievo dei campioni

Sondaggio	Prof. prelievo Camp. Indisturbati
S1	C.1: - 4,00 ÷ 4,50
S1	C.4: - 22,50 ÷ 23,00

Di seguito viene riportata la tabella riepilogativa con i parametri geotecnici ottenuti dalle prove.

Tabella 8 – sintesi dei parametri geotecnici

						granulometria				Taglio		Limiti			EDO			
Sond.	Camp.	Prof. (m).	W	γ	γ γ _s	Ghiaia %	Sabbia %	Limo %	Argilla %	c'	φ'	L.L.	L.P.	I.p.	Eed			
							(%)	(t/m ³)					KPa	(°)	%	%	I	МРа
S 1	C.1	4.00 – 4.50	17.0	2.1	2.73	3.4	30.2	34.9	31.5	22	25	34.8	22.8	12.1	12.66			
S 1	C.4	22.5 – 23.0	21.0	2.0	2.72	0.8	20.4	66.6	12.2	3	30	22.9	20.6	2.3	3.64			

9. MODELLI GEOLOGICO E GEOTECNICO DEL SITO

Con riferimento ai risultati delle indagini effettuate, si propone la ricostruzione litostratigrafica lungo la sezione A-A (la traccia della sezione è riportata in Allegato 4).

Dalla sezione si evince che l'opera in progetto inserito nel modello geologico studiato interesserà 7 livelli stratigrafici alternati tra di loro.

Nella tabella 9 si riporta una breve descrizione del terreno componente lo strato, spessore medio dello strato sp, peso di volume γ , peso di volume saturo γ_{sat} coesione c', angolo di resistenza al taglio ϕ ' e coesione non drenata cu. I parametri di resistenza sono da intendersi nominali e derivano dalle evidenze delle prove di laboratorio e dalle indagini in situ.

Tabella 9

strato n.	Descrizione litologica	s _p (m)	Unita geotecnica	γ (t/m³)	c' (kPa)	φ' (°)	Cu (kPa)	Eed (Mpa)
1	Materiale di riporto	2.6	Α	1.76	0.0	27	-	-
2	Ghiaia con sabbia limosa	1.0	В	2.59	0	30	-	28.6
3	Limi sabbiosi e/o sabbie limose	5.6	С	2.1	22	25	275	12.66
4	Sabbia limosa marrone	1.5	В	2.59	0	30	-	28.6
2a	Ghiaia con sabbia Iimosa	5.1	В	2.59	0	30	-	28.6
5	Limo sabbioso con argilla e ghiaia	1.5	D	1.97	3	30	19.5	3.64
2b	Ghiaia con sabbia limosa	4.0	В	2.59	3.0	30	-	28.6
4a	Sabbia limosa marrone	1.0	В	2.59	0	30	-	28.6
6	Limi sabbiosi e/o sabbie limose	1.8	С	2.1	22	25	275	12.66
7	Sabbia limosa con ghiaia e livelli di arenaria ceicentimetrici	4.0	В	2.59	0	30	-	28.6

La prima lettura al piezometro installato al sondaggio S1, eseguita subito dopo la realizzazione dello stesso, ha evidenziato la presenza di falda ad una quota di -6.65 m dal p.c.; è alquanto verosimile un innalzamento della falda di circa 1.5 m nel periodo di morbida. Si assume, quindi, un livello posto a profondità di -5.0 m dal p.c. attuale.

10. LIQUEFAZIONE DEI TERRENI

Il fenomeno della liquefazione può verificarsi, nel corso di un terremoto, in terreni sabbiosi saturi, laddove si ha un significativo decremento della resistenza al taglio; è noto che quest'ultima è definita dall'espressione

$$\tau = (\sigma - u) \tan \varphi$$

in cui:

 τ = resistenza al taglio del terreno;

 φ = angolo di attrito interno (tensioni efficaci);

 σ = tensione normale al piano di rottura;

u = tensione dell'acqua interstiziale.

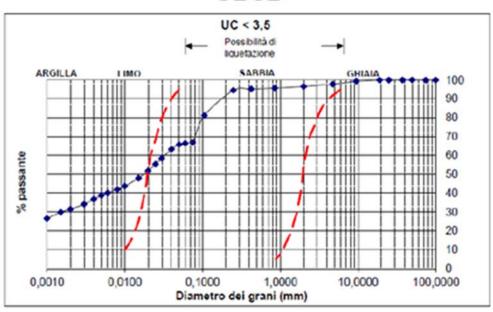
Nel caso di un terremoto (sollecitazione ciclica dovuta alle onde di taglio) può verificarsi un repentino incremento delle tensioni interstiziali (u) sino ad un valore prossimo alla tensione normale (σ), nel qual caso la resistenza al taglio τ = 0 e si verifica il fenomeno della liquefazione.

Le NTC 2018, escludono che tale analisi devono essere condotte quando si verifica almeno una delle seguenti condizioni:

- Accelerazioni massime attese al piano campagna in assenza di manufatti (condizione di freefield) inferiori a 0.1g (a < 1 m/secq);
- Profondità media stagionale della falda superiore a 15 metri dal piano di campagna;
- Depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata N1,60> 30;
- Distribuzione granulometrica esterna alle zone indicate (Tsuchida ,1970). È necessario che un profilo ricada completamente nei limiti indicati per poter essere considerato liquefacibile.

10.1 PROFONDITÀ MEDIA STAGIONALE DELLA FALDA

Come illustrato al cap. 8.1, il livello di falda misurato nella stazione piezometrica S1 si pone ad una quota di -6.65 m dal p.c.; soddisfacendo, pertanto, la condizione stabilità dalle NTC2018 e rientrando ampiamente entro i 15m.


10.2 DISTRIBUZIONE GRANULOMETRICA

Sono stati sovrapposti i limiti delle zone in cui è possibile che il terreno sia liquefacibile con la curva granulometrica del campione C1 prelevato durante l'esecuzione del sondaggio S1 (Cfr. Fig. 9).

Campione S1 C1 - 4.00 m

Ghiaia = 3.4 % Sabbia = 30.2 % Limo = 34.9 % Argilla = 31.5 %

S1C1

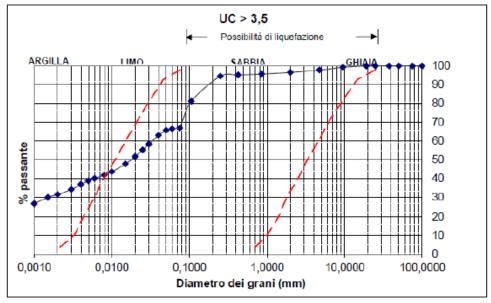


Figura 9 – Sovrapposizione curva granulometrica del campione S1C1 con il range di liquefazione

11. TETTONICA E SISMICITA'

11.1 Inquadramento sismo-tettonico

Il territorio toscano, ed in particolare la zona in studio è posta in una porzione di catena appenninica interessata da attività geodinamica recente o attuale e risulta caratterizzata da notevole attività sismica: al suo interno, infatti, sono state riconosciute numerose strutture sismogenetiche attive createsi a causa dell'evoluzione tettonica che ha interessato la regione nel corso del Neogene.

In Figura 10 è riportata la localizzazione dei principali terremoti storici (per classi di magnitudo) che hanno interessato il territorio della Toscana.

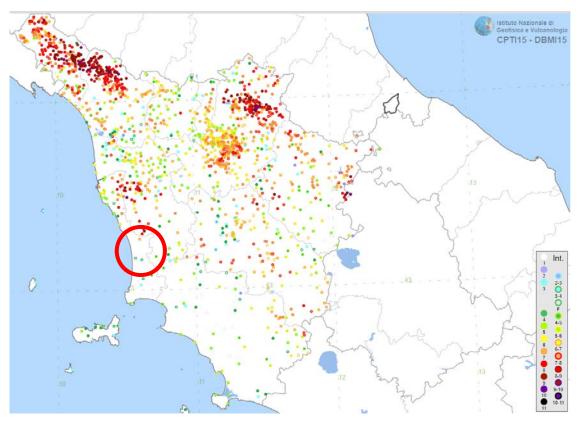


Figura 10 - Carta degli epicentri dei principali terremoti storici che hanno interessato la Toscana (per classi di magnitudo da CPTI15-DBMI15). Il cerchio rosso individua approssimativamente il territorio del Comune di Cecina.

12. CARATTERISTICHE SISMICHE DEL TERRITORIO

Allo scopo di consentire un maggior dettaglio sull'area oggetto di studio, si è provveduto a consultare il Catalogo Parametrico Italiano dei Terremoti (CPTI15) ed il relativo database macrosismico (DBMI15).

Nel territorio provinciale di Cecina sono stati registrati storicamente 19 eventi sismici rilevanti il cui effetto è stato avvertito all'interno del comune stesso e, quindi, in modo analogo nei comuni limitrofi; in Tabella 10 ed in Fig. 11 sono elencate le osservazioni, aventi la maggiore intensità al sito, disponibili per il territorio, ed oltre alla stessa intensità al sito (Is), l'anno, il mese (Me), il giorno (Gi), in cui si è verificato l'evento, l'intensità massima epicentrale in scala MCS (Io), e la magnitudo momento (Mw).

Tabella 10 - Elenco dei terremoti verificatisi nell'area del comune di Cecina tra il 1000 ed il 2020 (DBMI15, versione 2015 del Database Macrosismico Italiano, Bologna, http://emidius.mi.ingv.it/CPTI15-DBMI15)

Effetti								In occasione del terremoto del			
Int.	An	no Me	Gi	Но	Mi	Se		Area epicentrale	NMDP	Io	Mw
F	₽	1742	01	27	11	20		Livornese	16	6	4.87
6	₽	1846	08	14	12			Colline Pisane	121	9	6.04
NF	₽	1895	05	18	19	55	1	Fiorentino	401	8	5.50
NF	₽	1904	06	10	11	15	2	Frignano	101	6	4.82
NF	©	1911	09	13	22	29	0	Chianti	115	7	5.08
5	₽	1914	01	15	03	27	2	Livornese	25	5	4.33
NF	₽	1915	01	13	06	52	4	Marsica	1041	11	7.08
5	₽	1920	09	07	05	55	4	Garfagnana	750	10	6.53
NF	₫	1948	06	13	06	33	3	Alta Valtiberina	142	7	5.04
5-6	₫	1950	04	01				Livornese	15	6	4.99
4	E	1970	80	19	12	19		Colline Metallifere	26	6	4.68
3-4	Ġ	1972	10	25	21	56	1	Appennino settentrionale	198	5	4.87
NF	Ġ	1980	09	08	19	41	1	Costa Grossetana	55	5-6	4.44
NF	Ġ	1983	11	09	16	29	5	Parmense	850	6-7	5.04
NF	₽	1984	04	29	05	02	5	Umbria settentrionale	709	7	5.62
3	₽	1987	01	22	05	10	5	Costa pisano-livornese	157	5-6	4.15
NF	₽	1993	80	06	07	51	4	Colline Metallifere	35	5-6	4.03
2	₽	1995	10	10	06	54	2	Lunigiana	341	7	4.82
3	₽	1998	05	20	11	07	4	Colline Metallifere	31	4-5	4.19

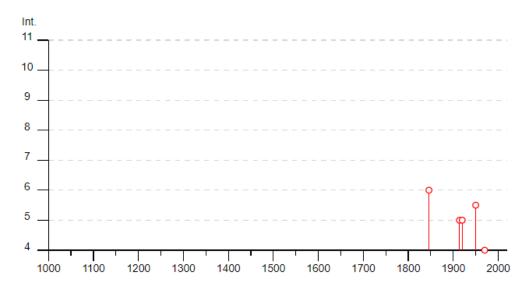


Figura 11 - Diagramma della storia sismica di Cecina (DBMI15, versione 2015 del Database Macrosismico Italiano. Milano, Bologna, http://emidius.mi.ingv.it/CPTI15-DBMI15).

13. ZONAZIONE SISMICA NAZIONALE E REGIONALE

Negli ultimi anni il punto di riferimento per le valutazioni di pericolosità sismica nazionale è stato rappresentato dalla zonazione sismogenetica ZS9 (Scandone et al. 1996 - 2000) che rappresenta la traduzione operativa del modello sismotettonico riassunto in Meletti et al. (2000); successivamente, in seguito all'emanazione dell'O.P.C.M. 20.3.2003 n. 3274, è stato redatto a cura di un gruppo di lavoro dell'INGV un documento denominato "Redazione della mappa di pericolosità sismica prevista dall' O.P.C.M. 20-3-2003, n. 3274. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici" che individua quattro zone sismiche a pericolosità decrescente (zona 1, zona 2, zona 3 e zona 4) e la formazione di elenchi dei comuni compresi in ciascuna zona. Ogni zona è contrassegnata da un diverso valore del parametro ag corrispondente alla accelerazione di picco orizzontale del suolo, con probabilità di superamento del 10% in 50 anni, espressa come frazione dell'accelerazione di gravità g, da adottare in ciascuna delle zone sismiche del territorio nazionale.

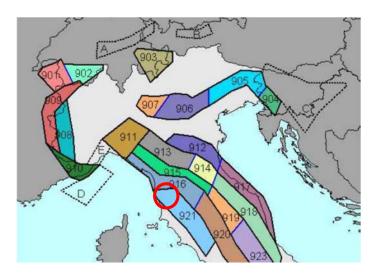


Figura 12 - Zonizzazione sismogenetica ZS9. Il cerchio rosso individua approssimativamente il territorio del Comune di Cecina.

Con DGRT n.421 del 26/05/2014 è stato approvato un aggiornamento della classificazione sismica regionale, relativo all'aggiornamento dell'allegato 1 e dell'allegato 2 della DGRT n.878 dell'80/10/2012 ("Aggiornamento della classificazione sismica regionale in attuazione dell'O.P.C.M. 3519/2006 ed ai sensi del D.M. 14/01/2008 - Revoca della DGRT 431/2006.

Il territorio del comune di Cecina risulta classificato sismico e ricade all'interno della zona sismogenetica n.921 (Etruria) 921 (Zonazione Sismogenetica ZS9 INGV 2004) caratterizzata da una diffusa sismicità di energia moderata, con pochi eventi di magnitudo più elevata, responsabili di danni significativi su aree di limitata estensione anche per la superficialità degli ipocentri (Bagnoregio

1695, Orciano Pisano 1846, Piancastagnaio 1919). Questa zona sismogenetica è caratterizzata da un valore Mwmax1 di 5.91 e, conseguentemente, da un valore Mwmax2 di 6.14

Le nuove zone sismiche sono definite per diversi valori di accelerazione orizzontale massima ag, come riportato in Tabella 11.

Tabella 11 – Zone sismiche e valori di accelerazione orizzontale massima ag

Zona	Valori di ag
1	0,35g
2	0,25g
3	0,15g
4	0,05g

Dall'analisi della Mappa di pericolosità sismica del territorio nazionale elaborata dall'INGV nel 2004 e dalla carta di macrozonazione sismica della Regione Toscana, il Comune di Cecina ricade in **zona** 3, definita come zona a "sismicità bassa" (S=6 secondo la precedente Normativa), in cui si possono registrare valori di accelerazione massima di picco al suolo a(g) pari a 0.15 g, con un tempo di ritorno (Tr) pari a circa 475 anni (probabilità di eccedenza del 10% in 50 anni) (Fig.13).

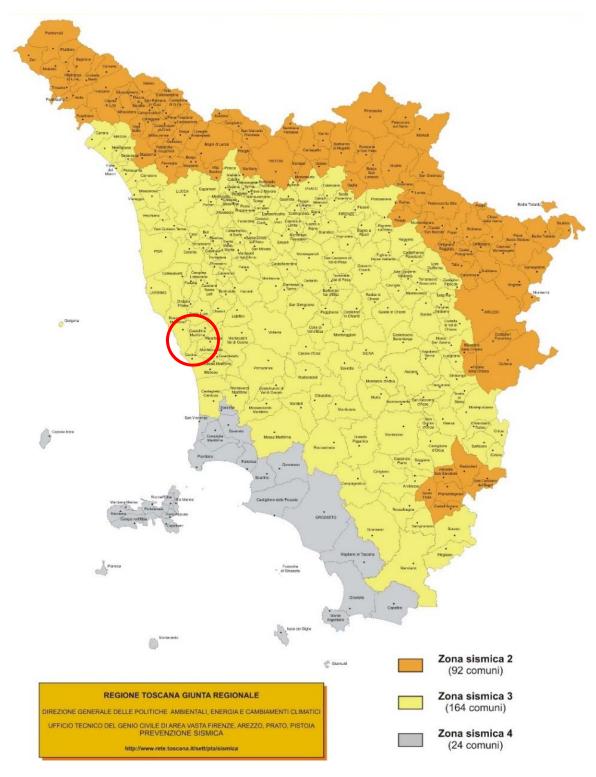


Figura 13 – Classificazione sismica vigente dei comuni della Regione Toscana

14. PERICOLOSITA' SISMICA

Secondo l'UNDRO (United Nations Disaster Reliet Office) il Rischio sismico si definisce come: "Grado di probabilità che si verifichi, in una determinata area ed in un determinato periodo di tempo, un evento sismico dannoso con l'insieme degli effetti geologici e geofisici ad esso connessi, senza alcun riguardo per le attività umane".

La pericolosità sismica locale, intesa come la misura dello scuotimento al suolo atteso in un dato sito, è legata, oltre che alle caratteristiche sismotettoniche ed alle modalità di rilascio dell'energia alla sorgente, alla propagazione delle onde sismiche dalla sorgente al sito ed alla loro interazione con le caratteristiche geologiche locali, nonché alle caratteristiche del terremoto di progetto, inteso come l'evento sismico caratterizzato dalla massima magnitudo ed intensità, contraddistinto dalla massima accelerazione di picco e relativo contenuto in frequenza, relativamente al periodo di ritorno più prossimo.

I fattori principali che definiscono la pericolosità sismica di una zona si possono identificare con:

- le caratteristiche degli eventi sismici che possono verificarsi nell'area in un dato intervallo temporale e con una prefissata probabilità (Periodo di ritorno);
- le condizioni geologico-morfologiche e geotecniche dei litotipi superficiali che concorrono a modificare la risposta sismica locale.

In linea di principio il rischio sismico può essere ridotto intervenendo su ciascuno dei fattori, o sulle loro combinazioni, che concorrono a determinare il rischio.

Gli elementi fondamentali che concorrono ad una moderna valutazione della "Pericolosità sismica" sono pertanto da ricercare nelle caratteristiche storiche, sismologiche, sismogenetiche, geologiche, relative al territorio che si vuol sottoporre ad analisi.

Con l'ordinanza n. 3274 del 20/03/2003 viene abbandonato il concetto di "Categoria" e viene assunto quello di "zona" ed, il coefficiente S (grado di sismicità) viene sostituito da quello di accelerazione probabile.

Il risultato, per ogni comune, è rappresentato da una stima del rischio sismico che tiene conto dell'intera storia sismica riportata nel catalogo sismico nazionale e che viene espresso in termini probabilistici. La pericolosità sismica di riferimento ipotizza un substrato omogeneo in roccia ed è espressa in PGA (Peak Ground Acceleration) con associato un periodo di ritorno di 475 anni, valore convenzionale in quanto rappresenta l'accelerazione associata alla probabilità del 90% di non superamento considerando un periodo di ritorno di 50 anni.

In Fig. 14 si riporta la mappa di pericolosità sismica del territorio nazionale in cui viene espresso il valore dello scuotimento atteso (valore di accelerazione orizzontale con la probabilità del 10% di essere ecceduto una volta nei prossimi 50 anni).

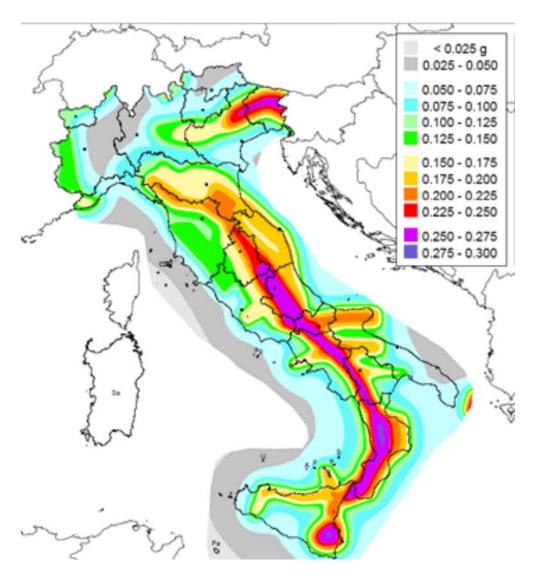


Figura 14 - Mappa di pericolosità sismica del territorio nazionale in cui si riporta il valore di PGA che ha la probabilità del 10% di essere ecceduto almeno una volta nei prossimi 50 anni.

Si è provveduto, quindi, a consultare le mappe probabilistiche della pericolosità sismica del territorio nazionale (Cfr. Fig. 15), espresse con diversi parametri dello scuotimento su una griglia regolare a passo 0.05°, relative al Comune di Cecina.

Esse riportano due distinti parametri dello scuotimento: a(g) cioè l'accelerazione orizzontale massima del suolo e Se(T), cioè lo spettro di risposta Elastico in funzione del periodo T, in accelerazione.

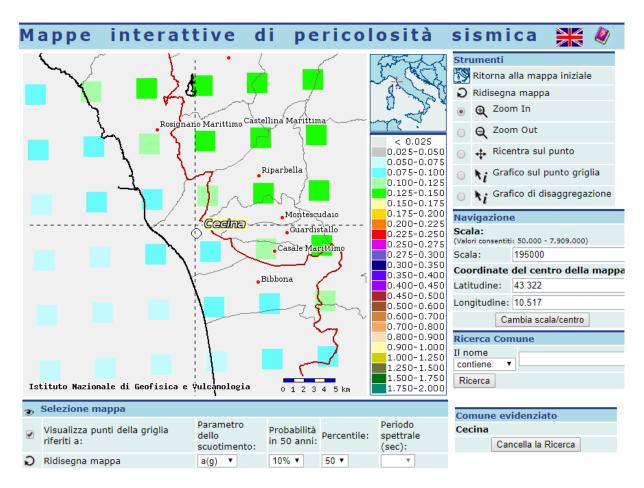


Figura 15 - Mappa di pericolosità sismica per il territorio di Cecina espressa in termini di a(g) e probabilità di eccedenza del 10% in 50 anni (TR = 475 anni).

15. VALUTAZIONE DELLA RISPOSTA SISMICA LOCALE

L'elemento più importante nelle verifiche geotecniche di interazione terreno-struttura o di stabilità dei versanti in campo sismico è rappresentato dalla valutazione della *risposta sismica locale* (RSL), tenendo conto della normativa vigente in materia:

15.1 Risposta sismica locale (RSL)

La valutazione della risposta sismica locale (RSL) si effettua in base alle **NTC 2018**, in cui, in assenza di specifiche analisi, si può fare riferimento ad un approccio semplificato che si basa sull'individuazione di categorie di sottosuolo di riferimento e sulle condizioni topografiche dei siti.

Le azioni sismiche, di cui tener conto in progetto e nelle verifiche geotecniche, vengono definite muovendo dalla pericolosità sismica di base del sito in esame, che può essere valutata dalla probabilità che nel periodo di riferimento (V_R in anni) si verifichi un evento sismico di entità almeno pari ad un valore prefissato; tale probabilità viene designata come "Probabilità di eccedenza o superamento nel periodo di riferimento P_{VR} ".

Per quanto riguarda la quantificazione della pericolosità si fa riferimento ad alcune grandezze.

La prima è l'intensità sismica (misura della potenzialità distruttiva del terremoto) che può essere valutata in modi diversi: sono ben note le Scale *Mercalli Modificata* (MM), *Medvedev-Sponhenar-Karnik* (MSK) e *Mercalli-Cancani-Sieberg* (MCS) che si riferiscono a gradi macrosismici.

Un altro parametro è il valore massimo dell'accelerazione $a(\iota)$ al suolo (P.G.A. (Peak Ground Acceleration); l'accelerazione è misurata relativamente all'accelerazione di gravità (g = 9,80 m/sec²) ed un valore di 0,1g è già capace di generare danni.

15.2 Vs30 e categoria di suolo di fondazione

Per quanto attiene la classificazione della categoria di suolo di fondazione è stata eseguita n.1 prospezione sismica tipo M.A.S.W. (Multichannel Spectral Analysis of Waves) al fine di determinare il valore delle velocità delle onde sismiche di taglio.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, VS,eq (in m/s).

Il valore di Vseq si calcola, al di sotto del piano di posa della fondazione o dalla testa del palo in caso di fondazioni su pali, sulla scorta dei dati forniti dalla Ditta esecutrice della prova, mediante la sequente espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

hi = spessore dell'i-esimo strato;

VS,i= velocità delle onde di taglio nell'i-esimo strato;

N= numero di strati;

H= profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da VS non inferiore a 800 m/s;

Tuttavia per depositi con profondità H del substrato superiori ai 30 m, la velocità equivalente delle onde di taglio Vseq è definita dal parametro Vs30 ottenuto ponendo H=30 m e considerando le proprietà degli strati di terreno fino a tale profondità.

La prova consiste nella valutazione della velocità di propagazione delle onde sismiche trasversali nel sottosuolo mediante prospezione sismica basata sulla propagazione delle onde superficiali di Rayleigh di tipo attivo.

Il valore calcolato di Vseq è pari a <u>323 m/s</u>, ciò consente di far rientrare l'area progettuale nella categoria di sottosuolo *C* ovvero "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti" (cfr. Tab. 12).

In Figura 16 si riporta il modello di velocità delle onde S ottenuto per il sito in esame:

Thickness	Depth	Vs	Vp	Poisson	Density
1	0	232	464	0.333	1.8
1	1	219	438	0.333	1.8
2	2	210	420	0.333	1.8
2	4	198	396	0.333	1.8
2	6	303	606	0.333	1.8
2	8	439	877	0.333	1.8
2	10	483	965	0.333	1.8
2	12	413	825	0.333	1.8
4	14	278	556	0.333	1.8
6	18	305	610	0.333	1.8
8	24	582	1163	0.333	1.8
	32	758	1515	0.333	1.8

Figura 16 – Tabella di calcolo della prospezione sismica di tipo M.A.S.W.

Tabella 12 - Classificazione sismica - Riferimento alle N.T.C.18 (D.M. del 17.01.2018 – "Aggiornamento delle Norme Tecniche per le Costruzioni")

TIPO DI TERRENO	PROFILO STRATIGRAFICO	V _{S.eq} [m/s]
А	> 800	
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.	< 800 > 360
с	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.	< 360 > 180
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 a 180 m/s.	< 180 > 100
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C e D, con profondità del substrato non superiore a 30 m.	

Le caratteristiche della superficie topografica fanno rientrare l'area in categoria **T1 =** Superficie pianeggiante (cfr. Tab. 13).

Tabella 13 – Riferimento alle N.T.C. 18 (D.M. del 17.01.2018)

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

16. VINCOLI GEOLOGICI

Dalla consultazione della carta della tutela e territorio n.8 del P.A.I. dell'Autorità di bacino Toscana Costa, l'area di stretto interesse progettuale risulta essere un punto critico noto (ponti e attraversamenti) nonché con pericolosità idraulica molto elevata (P.I.M.E.) (cfr. Fig.17).

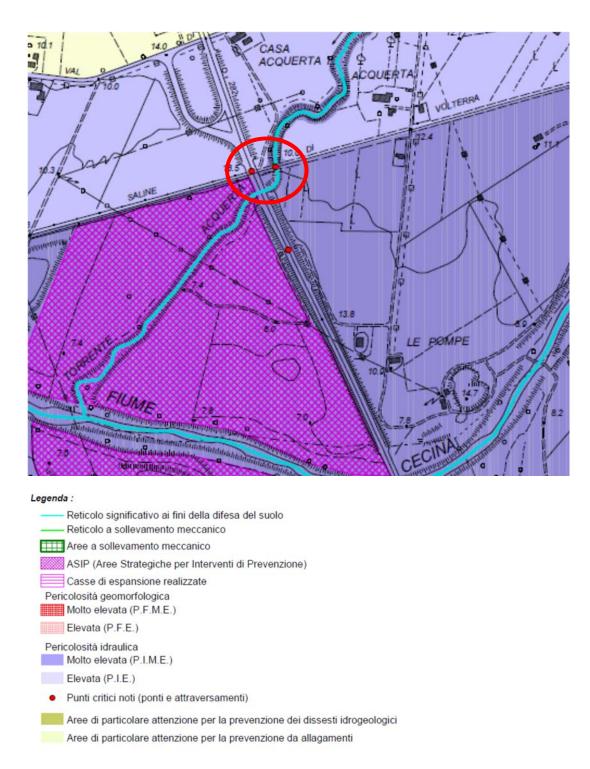


Figura 17-; stralcio della carta della tutela e territorio n.8 del P.A.I. Regione Toscana

Le norme di piano che riguardano il P.I.M.E. sono:

Art. 5 Aree a pericolosità idraulica molto elevata (P.I.M.E.) (i.v.)

1. Nelle aree P.I.M.E. sono consentiti interventi idraulici atti a ridurre il rischio idraulico, autorizzati dalla autorità idraulica competente, tali da migliorare le condizioni di funzionalità idraulica, da non aumentare il rischio di inondazione a valle, da non pregiudicare l'attuazione della sistemazione idraulica definitiva e tenuto conto del presente Piano di Assetto Idrogeologico.

I progetti preliminari degli interventi sono sottoposti al parere del competente Bacino che si esprime in merito alla coerenza degli stessi rispetto agli obiettivi del presente Piano e alle previsioni generali di messa in sicurezza dell'area.

Sono altresì consentiti gli interventi di recupero, valorizzazione e mantenimento della funzionalità idrogeologica, anche con riferimento al riequilibrio degli ecosistemi fluviali.

2. Tali aree potranno essere oggetto di atti di pianificazione territoriali per previsioni edificatorie non diversamente localizzabili, subordinando l'attuazione delle stesse alla preventiva o contestuale esecuzione di interventi di messa in sicurezza per eventi con tempo di ritorno di 200 anni.

Gli interventi, definiti sulla base di idonei studi idrologici e idraulici, tenendo anche conto del reticolo di acque superficiali di riferimento del presente P.A.I., non devono aumentare il livello di rischio in altre aree con riferimento anche agli effetti dell'eventuale incremento dei picchi di piena a valle.

Le aree che risulteranno interessate da fenomeni di inondazioni per eventi con tempi di ritorno non superiori a 20 anni, non potranno essere oggetto di previsioni edificatorie, salvo che per infrastrutture a rete non diversamente localizzabili con le condizioni di cui al successivo comma 11 lettera c.

- 3. Gli studi di cui al comma 2 devono attenersi ai criteri definiti dal Bacino, il quale si esprime sulla coerenza degli stessi con gli obiettivi e gli indirizzi del PAI e dei propri atti di pianificazione e, ove positivamente valutati, costituiscono implementazione del quadro conoscitivo del presente Piano.
- 4. Nelle aree P.I.M.E. il Bacino si esprime sugli atti di pianificazione di cui alla L.R. 5/95 in relazione alla coerenza degli stessi rispetto al presente Piano, nonché alla coerenza con il complesso degli strumenti di pianificazione di bacino delle valutazioni sugli effetti ambientali riferiti alle risorse acqua e suolo.

I pareri di cui sopra si intendono espressi in senso favorevole decorsi 90 giorni dalla presentazione della relativa istanza istruttoria in assenza di determinazioni o di comunicazioni da parte del Bacino.

5. La realizzazione di nuovi interventi pubblici o privati, previsti dai vigenti strumenti di governo del territorio alla data di entrata in vigore del presente Piano, fatto salvo quanto previsto al successivo comma 8, è subordinata alla preventiva o contestuale esecuzione di interventi di messa in sicurezza per eventi con tempo di ritorno di 200 anni.

Gli interventi, definiti sulla base di idonei studi idrologici e idraulici, tenendo anche conto del reticolo di acque superficiali di riferimento del presente P.A.I., non devono aumentare il livello di rischio in altre aree con riferimento anche agli effetti dell'eventuale incremento dei picchi di piena a valle.

I progetti preliminari degli interventi strutturali di messa in sicurezza sono sottoposti al parere del Bacino che si esprime in merito alla coerenza degli stessi rispetto agli obiettivi del presente Piano e alle previsioni generali di messa in sicurezza dell'area.

La messa in sicurezza rispetto ad eventi con tempo di ritorno di 200 anni potrà essere conseguita anche tramite adeguati sistemi di autosicurezza, nel rispetto delle seguenti condizioni:

- dimostrazioni dell'assenza o dell'eliminazione di pericolo per le persone e i beni;
- dimostrazione che l'intervento non determina aumento delle pericolosità a monte e a valle

Della sussistenza delle condizioni di cui sopra deve essere dato atto nel procedimento amministrativo relativo al titolo abilitativo all'attività edilizia (concessione, autorizzazione, dichiarazione di inizio attività).

- 6. In merito alla contestuale realizzazione degli interventi di messa in sicurezza connessi alla realizzazione di interventi edificatori o infrastrutturali, è necessario che il titolo abilitativo all'attività edilizia (concessione, autorizzazione, dichiarazione di inizio attività) contenga la stretta relazione con i relativi interventi di messa in sicurezza evidenziando anche le condizioni che possono pregiudicare l'abitabilità o l'agibilità dell'intervento.
- 7. Il soggetto attuatore, pubblico o privato, degli interventi di messa in sicurezza idraulica, è tenuto a trasmettere al Comune e al Bacino dichiarazione a firma di tecnico abilitato, degli effetti conseguiti con la realizzazione degli interventi, ivi compresa la delimitazione delle aree risultanti in sicurezza per eventi con tempo di ritorno di 200 anni. Quanto sopra costituisce implementazione del quadro conoscitivo del presente Piano
- 8. Nelle aree P.I.M.E., la realizzazione di edifici e nuovi volumi in singoli lotti nell'ambito di un contesto edificato, nonché il completamento di zone di espansione che risultino già convenzionate, previsti dagli strumenti urbanistici vigenti alla data di entrata in vigore del presente Piano, è consentita, nelle more della messa in sicurezza complessiva, nel rispetto delle seguenti condizioni:
- dimostrazione di assenza o di eliminazione di pericolo per le persone e i beni, anche tramite sistemi di autosicurezza, compatibilmente con la natura dell'intervento ed il contesto territoriale;
- dimostrazione che l'intervento non determina aumento delle pericolosità a monte e a valle

Della sussistenza delle condizioni di cui sopra deve essere dato atto nel procedimento amministrativo relativo al titolo abilitativo all'attività edilizia (concessione, autorizzazione, dichiarazione di inizio attività).

- 9. Nelle aree P.I.M.E., le utilizzazioni per finalità ambientali, ricreative e agricole dovranno comunque garantire la sicurezza degli utenti anche attraverso specifici piani di sicurezza.
- 10. Sul patrimonio edilizio esistente, sono consentiti gli interventi che non comportino aumenti di superficie coperta né di nuovi volumi interrati, fatti salvi volumi tecnici e tettoie senza tamponature laterali.

Sono altresì consentiti gli interventi di ampliamento della superficie coperta di fabbricati esistenti nei seguenti casi:

· interventi funzionali alla riduzione della vulnerabilità del fabbricato:

- · interventi necessari alla messa a norma di strutture ed impianti in ottemperanza ad obblighi derivanti da norme vigenti in materia igienico sanitaria, di sicurezza sull'ambiente di lavori, di superamento delle barriere architettoniche e di adeguamento antisismico.
- 11. Nelle aree P.I.M.E. sono inoltre consentiti:
- a. gli interventi necessari per la manutenzione ordinaria e straordinaria delle opere pubbliche e delle infrastrutture pubbliche, di interesse pubblico e private;
- b. gli interventi di ampliamento e di adeguamento delle opere pubbliche e delle infrastrutture pubbliche o di interesse pubblico, purchè siano realizzate in condizioni di sicurezza idraulica in relazione alla natura dell'intervento ed al contesto territoriale e, previo parere del Bacino, non precludano la possibilità di attenuare o eliminare le cause che determinano le condizioni di rischio e non concorrano ad aumentare il rischio in altre aree:
- c. la realizzazione di nuove opere e infrastrutture pubbliche o di interesse pubbliche non diversamente localizzabili, purché siano realizzate in condizioni di sicurezza idraulica per tempi di ritorno di 200 anni, non precludano la possibilità di attenuare o eliminare le cause che determinano le condizioni di rischio e non concorrano ad aumentare il rischio in altre aree. Quanto sopra deve risultare da idonei studi idrologici ed idraulici che dovranno attenersi ai criteri definiti dal Bacino, il quale si esprime sulla coerenza degli stessi con gli obiettivi e gli indirizzi del presente Piano e dei propri atti di pianificazione, ed ove positivamente valutati costituiscono implementazione del quadro conoscitivo del presente Piano;
- d. nelle zone del territorio destinate ad usi agricoli, le opere e gli impianti per usi agricoli, zootecnici ed assimilabili purchè siano realizzati in condizioni di sicurezza idraulica in relazione alla natura dell'intervento ed al contesto territoriale e senza aggravio di rischio nelle aree limitrofe, nonché la realizzazione di annessi agricoli risultanti indispensabili alla conduzione del fondo e con destinazione agricola vincolata fino ad una dimensione planimetrica massima di 100 mq.;
- e. l'installazione di strutture mobili temporanee stagionali per il tempo libero a condizione che sia comunque garantita l'incolumità pubblica, fermo restando la necessità di acquisire il parere dell'autorità idraulica competente.
- 12 I Comuni possono promuovere piani finalizzati alla rilocalizzazione delle funzioni non compatibili con le condizioni di pericolosità esistenti.

In base al DPGRT n° 53/R/2011 sono state individuate dallo Strumento Urbanistico le seguenti classi di pericolosità:

G.1 - Pericolosità geologica bassa: aree in cui i processi geomorfologici e le caratteristiche litologiche-giaciturali non costituiscono fattori predisponenti al verificarsi di processi morfoevolutivi.

In queste aree sono assenti limitazioni derivanti da caratteristiche geologico-tecniche e morfologiche.

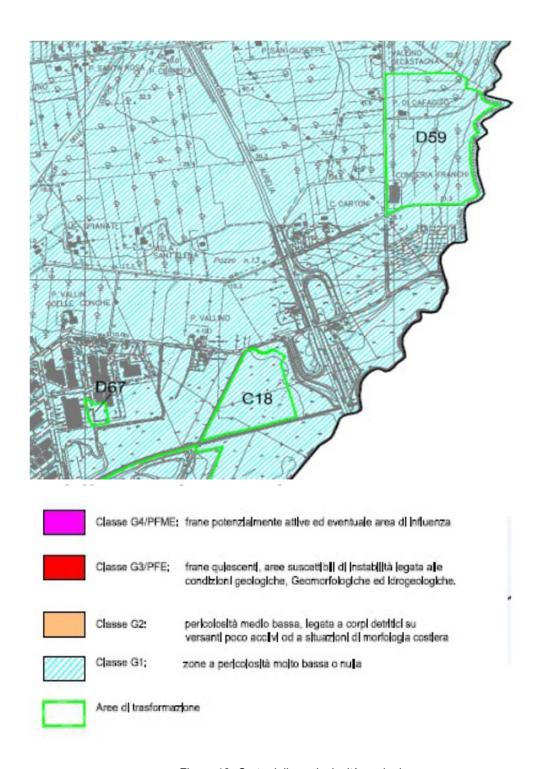


Figura 18- Carta della pericolosità geologica

17. CONCLUSIONI

Il presente lavoro ha avuto come finalità la definizione di dettaglio dei lineamenti geologici, morfologici e idrogeologici nonché sismici e geotecnici dei terreni interessati dal progetto esecutivo sulla linea Cecina - Volterra - Fosso Acquerta (LI) al km 284+732.

L'area in esame è collocata a nord-est del Comune di Cecina, nei pressi della località San Pietro in Palazzi; si pone ad una quota altimetrica di circa 11 m s.l.m..

Dal punto di vista geomorfologico ricade all'interno di un importante fondovalle del Fiume Cecina, e più precisamente il ponte ferroviario attraversa un suo tributario chiamano Torrente Acquerta.

L'area non presenta problematiche geomorfologiche in atto e risulta stabile per posizione. Le pendenze risultano mediamente contenute entro il 5%.

Dal punto di vista geologico l'area in studio ricade all'interno di depositi alluvionali recenti terrazzati e non terrazzati di età Olocenica (bna).

Grazie all'esecuzione del sondaggio geognostico a carotaggio continuo (denominati Spz), a due prove penetrometrica statiche meccaniche (CPT) le cui ubicazioni sono riportate in All.3 ed analisi di campioni rappresentativi di terreno realizzate in laboratorio autorizzato dal ministero (All.6), è stato ricostruito il modello geologico e geotecnico del sito in esame (cfr Cap.9).

Dalla sezione geologica (All.4) si evince che l'opera in progetto interesserà principalmente sette livelli stratigrafici alternati tra di loro.

Da questo modello scaturisce quello geotecnico, in cui si possono distinguere n.4 orizzonti geotecnici alternati tra di loro. Tali orizzonti presentano parametri geotecnici scadenti come riportato nella seguente tabella di sintesi e derivano dalle prove effettuate in situ ed in laboratorio.

strato n.	Descrizione litologica	s _p (m)	Unita geotecnica	γ (t/m ³)	c' (kPa)	φ' (°)	Cu (kPa)	Eed (Mpa)
1	Materiale di riporto	2.6	Α	1.76	0.0	27	-	-
2	Ghiaia con sabbia limosa	1.0	В	2.59	0	30	-	28.6
3	Limi sabbiosi e/o sabbie limose	5.6	С	2.1	22	25	275	12.66
4	Sabbia limosa marrone	1.5	В	2.59	0	30	-	28.6
2a	Ghiaia con sabbia limosa	5.1	В	2.59	0	30	-	28.6
5	Limo sabbioso con argilla e ghiaia	1.5	D	1.97	3	30	19.5	3.64

2b	Ghiaia con sabbia Iimosa	4.0	В	2.59	3.0	30	-	28.6
4a	Sabbia limosa marrone	1.0	В	2.59	0	30	-	28.6
6	Limi sabbiosi e/o sabbie limose	1.8	С	2.1	22	25	275	12.66
7	Sabbia limosa con ghiaia e livelli di arenaria ceicentimetrici	4.0	В	2.59	0	30	-	28.6

Il livello di falda misurato nella stazione piezometrica S1, nell'aprile 2014, si pone ad una quota di -6.65 m dal p.c.. È alquanto verosimile un innalzamento della falda di circa 1.5 m nel periodo di morbida. Si assume, quindi, un livello posto a profondità di -5.0 m dal p.c. attuale.

Per la definizione della risposta sismica locale è stata eseguita una prova di sismica attiva M.A.S.W., il cui risultato ha denunciato una velocità delle onde s Vs,eq pari a: **323** m/s facendo così rientrare in categoria **C** il suolo di interesse progettuale.

È stata condotta una verifica alla liquefazione dei terreni, in quanto il fuso granulometrico del campione S1c1 rientrava parzialmente all'interno del range della possibilità di liquefazione proposto dalle NTC'18. Dalla verifica della profondità della falda, è stata esclusa tale possibilità.

Dal punto di vista sismico l'area di progetto ricade, con la nuova zonazione sismica in vigore dal 10 aprile 2016 (DGR n. 2129 dell'11 luglio 2014 e la L.R. n. 33/2015), in **zona 3** con valori di accelerazione di ag pari a 0.15 g.

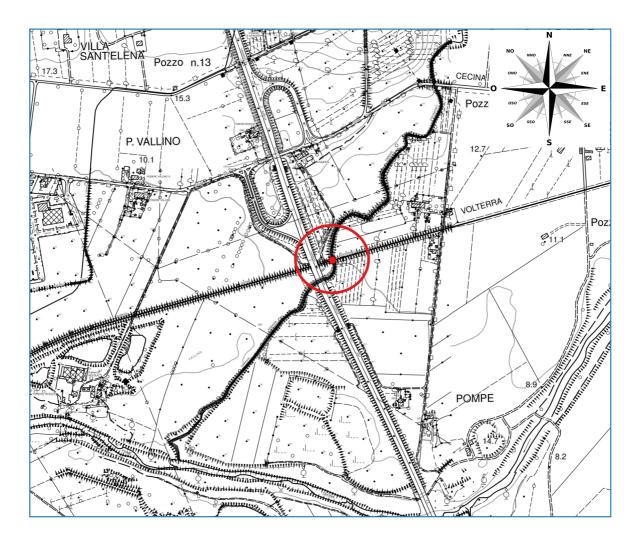
Dalla consultazione della carta della tutela e territorio n.8 del P.A.I. dell'Autorità di bacino Toscana Costa, l'area di stretto interesse progettuale, dal punto di vista dei vicoli geologici risulta essere un punto critico noto (ponti e attraversamenti) nonché con pericolosità idraulica molto elevata (P.I.M.E.).

Le norme del piano, all'art. 5 "Aree a pericolosità idraulica molto elevata", al punto 5 prevedono che: "La realizzazione di nuovi interventi pubblici o privati, previsti dai vigenti strumenti di governo del territorio alla data di entrata in vigore del presente Piano, fatto salvo quanto previsto al successivo comma 8, è subordinata alla preventiva o contestuale esecuzione di interventi di messa in sicurezza per eventi con tempo di ritorno di 200 anni".

In base al DPGRT n° 53/R/2011 sono state individuate dallo Strumento Urbanistico le seguenti classi di pericolosità:

G.1 - Pericolosità geologica bassa: aree in cui i processi geomorfologici e le caratteristiche litologiche-giaciturali non costituiscono fattori predisponenti al verificarsi di processi morfoevolutivi.

In queste aree sono assenti limitazioni derivanti da caratteristiche geologico-tecniche e morfologiche.

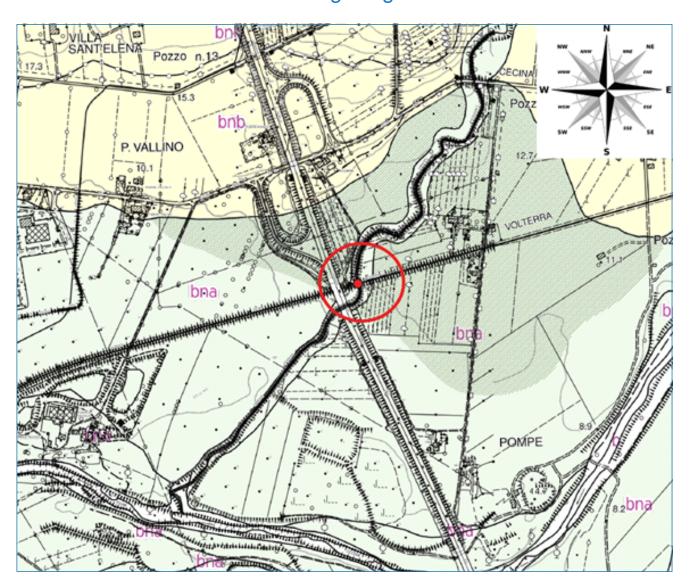

18. Allegati:

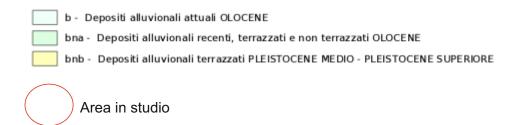
- All. 1 Corografia in scala 1:10.000
- All. 2 Carta geologica in scala 1:10.000
- All. 3 Ubicazioni indagini in scala 1:1.000
- All. 4 Sezione geologica 1:200
- All. 5 tabulati di calcolo prove penetrometriche SPT
- All. 6 Indagini e prove in situ e di laboratorio

Progetto definitivo linea Cecina - Volterra Fosso Acquerta al Km 284+732

Corografia

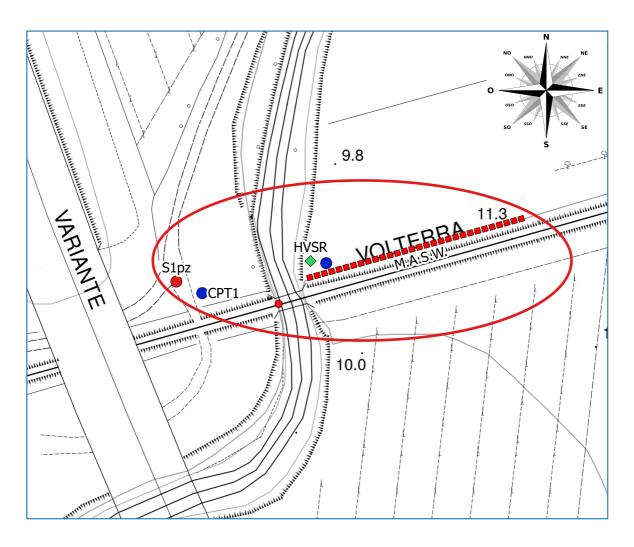
1:10.000




Progetto definitivo linea Cecina - Volterra Fosso Acquerta al Km 284+732

1:10.000

Carta geologica


Legenda

Progetto definitivo linea Cecina - Volterra Fosso Acquerta al Km 284+732

Ubicazione indagini

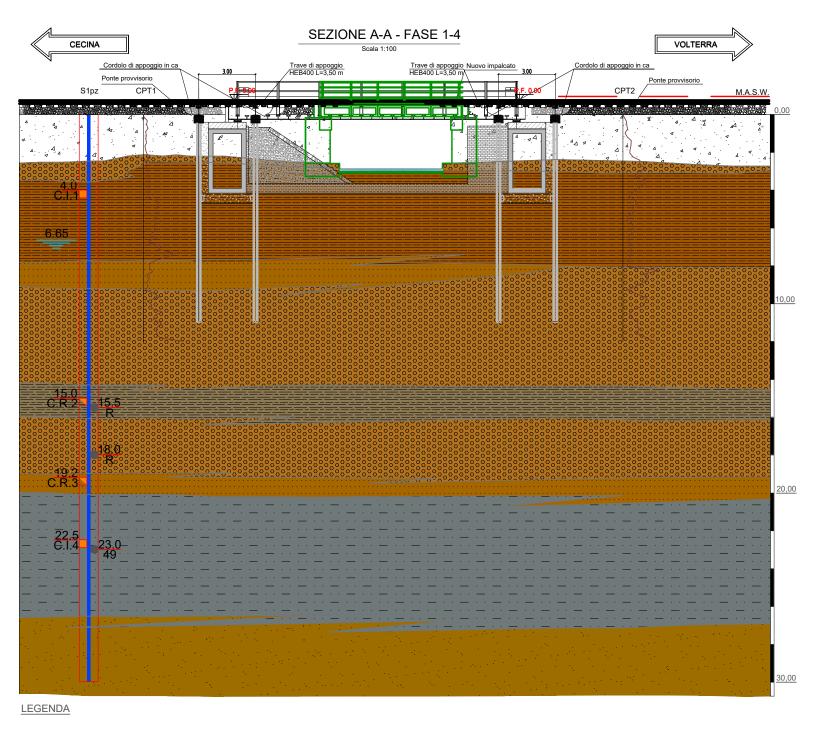
1:1.000

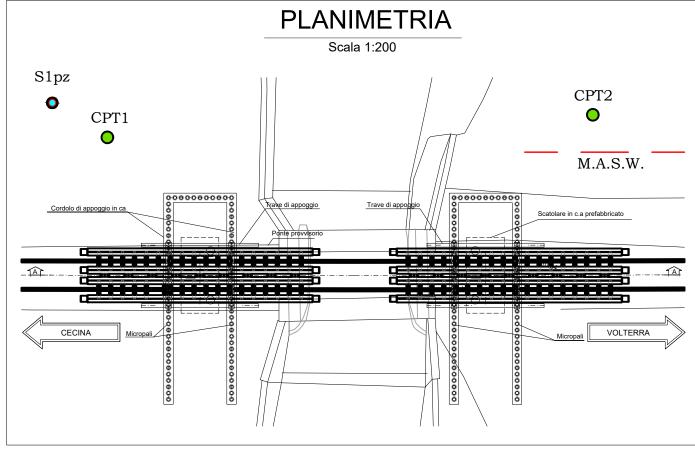
Legenda

Indagini Geognostiche

Area in studio

- S1pz
- CPT1
- CPT2


Indagini Geofisiche


♦ HVSR

M.A.S.W.

SEZIONE A-A

Scala 1:200

Strato 1

Terreno vegetale e di riporto: Ghiaia, sabbia e limo debolmente ghiaioso

Strato 2-a-b

Ghiaia limoso-sabbiosa, ghiaia e sabbia limosa

Strato 3

Limo sabbioso-argilloso con ghiaia

Strato 4-a

Sabbia limosa

Strato 5 Limo sabbioso con argilla ghiaia

Strato 6

Limo con argilla sabbiosa grigio azzurro

Strato 7

Sabbia limosa con ghiaia

Sondaggio a carotaggio continuo con piezometro, con indicato il numero di colpi, la profondità della prova S.P.T. e dei campioni indisturbati e rimaneggiati

Prova penetrometrica statica

M.A.S.W.

PROVA PENETROMETRICA DINAMICA

Committente: Ingegna s.r.l. Cantiere linea Cecina - Volterra - Fosso Acquerta (LI) al Km 284+732".

Località: Frazione di Cerchiera - Comune di Cecina

Caratteristiche Tecniche-Strumentali Sonda: PROVE SPT IN FORO

Rif. Norme DIN 4094 Peso Massa battente 63,5 Kg Altezza di caduta libera 0,76 m Peso sistema di battuta 4,2 Kg Diametro punta conica 50,46 mm Area di base punta 20 cm² Lunghezza delle aste 1 m 7 Kg/m Peso aste a metro 0,80 m Profondità giunzione prima asta Avanzamento punta 0,30 m Numero colpi per punta N(30)Coeff. Correlazione 1 Rivestimento/fanghi No

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M
- altezza libera caduta H
- punta conica: diametro base cono D, area base A (angolo di apertura α)
- avanzamento (penetrazione) δ
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL)
- tipo MEDIO (DPM)
- tipo PESANTE (DPH)
- tipo SUPERPESANTE (DPSH)

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa	prof.max indagine battente
		M (kg)	(m)
Leggero	DPL (Light)	M ≤10	8
Medio	DPM (Medium)	10 <m <40<="" td=""><td>20-25</td></m>	20-25
Pesante	DPH (Heavy)	40≤M <60	25
Super pesante (Super	DPSH	M≥60	25
Heavy)			

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M=30~kg, altezza di caduta H=0.20~m, avanzamento $\delta=10~cm$, punta conica

(α=60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;

- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta conica (α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica (α = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica (α = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$Nspt = \beta_t N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M = peso massa battente;

M' = peso aste;

H = altezza di caduta;

A = area base punta conica;

 δ = passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd = resistenza dinamica punta (area A); e = infissione media per colpo (δ/ N); M = peso massa battente (altezza caduta H); P = peso totale aste e sistema battuta.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981.

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media + s

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media - s

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata

secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 mt. ed immorsamento d = 1 mt..

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di SHI-MING (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di SHI-MING.

Correzione Nspt in presenza di falda

Nspt corretto = $15 + 0.5 \times (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

• Peck-Hanson-Thornburn-Meyerhof 1956 - Correlazione valida per terreni non molli a prof. < 5 mt.; correlazione valida per sabbie e ghiaie rappresenta valori medi. - Correlazione storica molto usata, valevole per prof. < 5 mt. per terreni sopra falda e < 8 mt. per terreni in falda (tensioni < 8-10 t/mq)

Meyerhof 1956 - Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).

Sowers 1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 mt. sopra falda e < 7 mt. per terreni in falda) $\sigma > 5$ t/mg.

De Mello - Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito $<38^{\circ}$.

Malcev 1964 - Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m. e per valori di angolo di attrito < 38°).

Schmertmann 1977- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.

Shioi-Fukuni 1982 (ROAD BRIDGE SPECIFICATION) Angolo di attrito in gradi valido per sabbie - sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 mt. sopra falda e > 15 mt. per terreni in falda) $\sigma > 15$ t/mq.

Shioi-Fukuni 1982 (JAPANESE NATIONALE RAILWAY) Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose .

Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie - sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 mt. sopra falda e > 15 mt. per terreni in falda) s>15 t/mq.

Meyerhof 1965 - Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 mt. e con % di limo > 5% a profondità < 3 mt.

Mitchell e Katti (1965) - Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

· Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.

Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Meyerhof (1957).

Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (Ey)

• Terzaghi - elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.

- Schmertmann (1978), correlazione valida per vari tipi litologici .
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

Bowles 1982, Terzaghi-Peck 1948-1967. Correlazione valida per peso specifico del materiale pari a circa γ = 2,65 t/mc e per peso di volume secco variabile da 1,33 (Nspt = 0) a 1,99 (Nspt = 95)

Modulo di poisson

Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

 Seed-Idriss 1978-1981. Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/sec)

Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

• Ohsaki & Iwasaki – elaborazione valida per sabbie con fine plastico e sabbie pulite.

Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 - 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac 1971-1982 - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso .

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson 1983 Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA 1983.
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt <8, argille limose-siltose mediamente
 plastiche, argille marnose alterate-fessurate.

Terzaghi-Peck (1948). Cu min-max.

• Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.

- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche " di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità).

Schmertmann 1975 Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc=20 e Qc/Nspt=2.

Schmertmann 1975 Cu (Kg/cmq) (valori minimi), valida per argille NC.

 $Fletcher\ 1965\ -\ (Argilla\ di\ Chicago)\ .\ Coesione\ non\ drenata\ Cu\ (Kg/cmq), colonna\ valori\ validi\ per\ argille\ a\ medio-bassa\ plasticità\ .$

- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni 1982, valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson 1983 Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975) per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP< 20), valida per litotipi argillosi a medio-bassa plasticità (IP< 20) da esperienze su argille glaciali .
- Vesic (1970) correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt <30) medie e molli (Nspt <4) e argille sabbiose (Nspt=6-12).

Modulo Di Young (Ey)

• Schultze-Menzenbach - (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. >15 D'Appollonia ed altri (1983) - correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

• Correlazione Bowles (1982), Terzaghi-Peck (1948-1967), valida per condizioni specifiche: peso specifico del materiale pari a circa G=2,70 (t/mc) e per indici dei vuoti variabili da 1,833 (Nspt=0) a 0,545 (Nspt=28)

PROVA ...SX1

Strumento utilizzato... Prova eseguita in data Falda rilevata PROVE SPT IN FORO 13/02/2019

Profondità (m)	Nr. Colpi
15,15	
15,30	
15,45	
18,15	100
18,30	
18,45	25
23,15	
23,30	27
23.45	22

STIMA PARAMETRI GEOTECNICI PROVA SX1

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	50	15,45	Terzaghi-Peck	3,38
Strato 3	49	23,45	Terzaghi-Peck	2,63

Qc (Resistenza punta Penetrometro Statico)

Qe Resistenza panta i eneri ometi o statico)							
	Nspt	Prof. Strato	Correlazione	Qc			
		(m)		(Kg/cm ²)			
Strato 1	50	15,45	Robertson (1983)	100,00			
Strato 3	49	23,45	Robertson (1983)	78,00			

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	50	15,45	Stroud e Butler (1975)	229,40
Strato 3	49	23,45	Stroud e Butler (1975)	178,93

Modulo di Young

	Nspt	Prof. Strato (m)	Correlazione	Ey (Kg/cm²)
Strato 1	50	15,45	Apollonia	500,00
Strato 3	49	23,45	Apollonia	390,00

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	50	15,45	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE
Strato 3	49	23,45	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	50	15,45	Meyerhof ed altri	3,57

Q;			40		22.45	3.4				4.7
Strat	to 3		49		23,45	IV.	leyerhof ed altri		2,	,47
Peso unità di volun	ne satur			7.0		~				
		Nspt			Strato n)	Co	orrelazione Pe		eso unità di volume saturo	
				(1.	<u></u>				(t/m^3)	
Strat	to 1		50		15,45		Bowles 1982, Terzaghi-Peck			
							1948/1967			
Strat	to 3		49		23,45		Bowles 1982,		2	,70
							Terzaghi-Peck 1948/1967			
TERRENI INCOE	DENTI									
Densità relativa	KENTI									
]	Nspt	Pro	f. Strato (m)	Nspt corre presenza		Correlazione	;	Densità relativ (%)	a
Strato 2		50		18,45	presenza	32,5	Gibbs & Ho			00
							19	957		
Angolo di resistenz	a al tag	lio	I							
]	Nspt	Pro	f. Strato (m)	Nspt corre		Correlazione	;	Angolo d'attrit	0
Strato 2		50		18,45	presenza	32,5			42	,39
						(ROAD BR SPECIFICA				
							SI Len Teatre	711)		
Modulo di Young	,	A.T.	D	C C	3 T /		G 1 :		M 1 1 1' W	
	_	Nspt		f. Strato (m)	Nspt corre presenza		Correlazione	;	Modulo di Your (Kg/cm²)	ng
Strato 2		50		18,45	•	32,5	Terza	ghi	504	,73
Modulo Edometric	0									
Triougio Euometric		Nspt	Pro	f. Strato	Nspt corre		Correlazione	;	Modulo	
				(m)	presenza	falda			Edometrico (Kg/cm²)	
Strato 2		50		18,45		32,5	Begemann 1974		130	,17
						(Ghiaia con sabbia)				
							Sauc	Jiaj		
Classificazione AG		NT4	D	f. Strato	N4	44	Correlazione		Classificazion	_
		Nspt		i. Siraio (m)	Nspt corre presenza		Correlazione	;	AGI	3
Strato 2		50		18,45		32,5	Classificazio A.G.I. 19		ADDENSA	ГО
							A.O.I. 12	711		
Peso unità di volun		NT4	D	C C44	N4	44	Correlazione		C	
]	Nspt		f. Strato (m)	Nspt corre		Correlazione	;	Gamma (t/m³)	
Strato 2		50		18,45		32,5	Meyerhof ed a	ıltri	2	,24
Peso unità di volun	ne satur	°0								
		Nspt	Pro	f. Strato	Nspt corre		Correlazione	;	Gamma Saturo)
Strato 2	Strato 2 50			(m) presenz		$\frac{\text{falda}}{32,5}$	Terzaghi-P	(t/m³)		
Suato 2				10,73		32,3	1948-19			
Modulo di Poisson										
MIOGRAFIO GI I UISSUII]	Nspt	Pro	f. Strato	Nspt corre		Correlazione	;	Poisson	
				(m)	presenza	falda				

~ •		40 4-		/ · ~ - \	
Strato 2	50	18 45	37.5	(\ (\dagger 1 \)	0.25
Strato 2	30	10,43	32,3	(A.U.I.)	0,23

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 2	50	18,45	32,5	Ohsaki (Sabbie	2570,07
				pulite)	

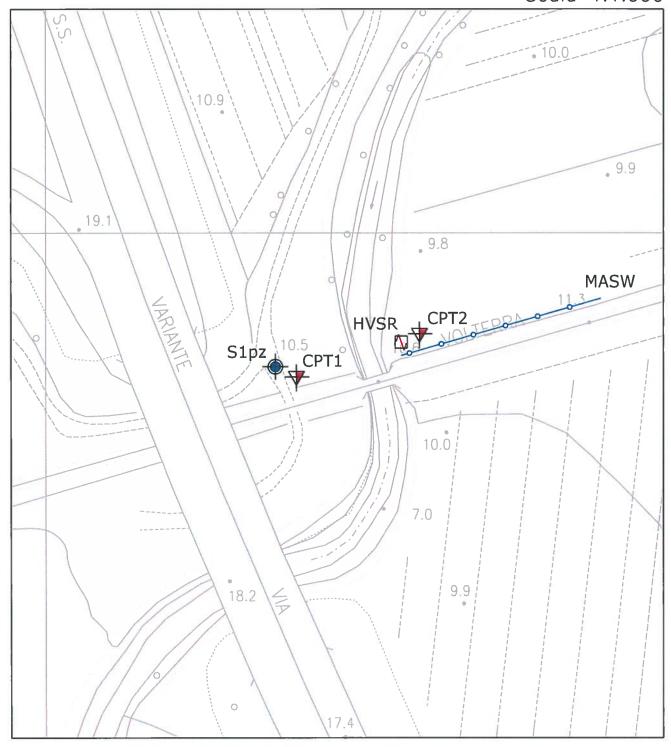
Velocità onde

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde
		(m)	presenza falda		m/s
Strato 2	50	18,45	32,5		388,91

Liquefazione

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Potenziale Liquefazione
Strato 2	50	18,45	32,5	Seed (1979) (Sabbie e ghiaie)	

Modulo di reazione Ko


	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Ko
Strato 2	50	18,45	32,5	Navfac 1971-1982	8,18

Qc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Kg/cm²)
Strato 2	50	18,45	32,5	Robertson 1983	100,00

PLANIMETRIA DI UBICAZIONE DELLE INDAGINI

Scala 1:1.000

Sondaggio a carotaggio continuo strumentato con piezometro

Prova penetrometrica statica

Indagine sismica passiva a stazione singola con metodo HVSR

Indagine sismica a rifrazione con metodo MASW

snc di Moretti Dr. Giuliano & C. STRATIGRAFIA SONDAGGIC Sede Legale: via B. di Ser Gorello n° 11/A 52100 AREZZO - P. IVA e C.F. 01358250510 Sede Operativa: via A. Grandi n° 51 52100 AREZZO Tel. 0575 - 323501 Fax 0575 - 1979797 E-mail info@micropali.com

Terreno di riporto costituito da ghiaie e sabbie di natura oficiolitica Perreno di riporto costituito da limo sabbieco del matura di lino di	<u>/est Syst</u> antiere				Località Cecina (LI) Sondaggio n		Inizio /				99 de	el 21/0	° / data 04/2015 o. / data
Ukologie Descrizione Quota (S.P.T.) Terreno di riporto costituito da ghiaic e sabbie di natura folicitica Terreno di riporto costituito da lino sabbioso dell'omente ghiaioso (pinitica) Terreno di riporto costituito da lino sabbioso dell'omente ghiaioso (pinitica) Giniaioso (ghiaia eterometrica ed eterogenea, prevalentemente oficilitica) Limo con ghiaia eterometrica ed eterogenea provinci pr	esponsabil	le di sito	'				oo Sonda	15 - 0	8/04/ Diam	t5 etro pe	70 de	el 07/0 ne / D	04/2015 iametro rivest
Terreno di riporto costituito da ghiaie e sabbie di natura foliolitica Terreno di riporto costituito da limo sabbioso debolmente prevalentemente oficiolitica; Terreno di riporto costituito da limo sabbioso debolmente prevalentemente oficiolitica) color marrone brunastro \$\frac{1}{2}\$ finisios (qinisia eterometrica ed eterogenea) prevalentemente oficiolitica) color marrone brunastro \$\frac{1}{2}\$ limo sabbioso debolmente ghiaioso color marrone brunastro \$\frac{1}{2}\$ limo con ghiaia eterometrica ed eterogenea aggilloso color marrone \$\frac{1}{2}\$ limo con argilla debolmente ghiaioso color marrone \$\frac{1}{2}\$ limo con argilla sabbioso elor marrone \$\frac{1}{2}\$ limo con argilla sabbiosa elimo con sabbia argilloso color marrone \$\frac{1}{2}\$ limo sabbioso e con sabbia argilloso talora debolmente ghiaioso color marrone \$\frac{1}{2}\$ limo con argilla sabbiosa elimo con sabbia argilloso color limo con argilla sabbiosa elimo con sabbia argilloso color limo con argilla sabbiosa elimo con sabbia argilloso color limo con argilla sabbiosa elimo con sabbia argilloso color grigio azzurro \$\frac{1}{2}\$ limo con argilla sabbiosa elimo con sabbia argilloso color grigio azzurro \$\frac{1}{2}\$ limo con argilla sabbiosa elimo con sabbia argilloso color grigio azzurro \$\frac{1}{2}\$ limo con argilla sabbiosa elimo con sabbia argilloso color grigio azzurro \$\frac{1}{2}\$ limo con argilla sabbiosa elimo con sabbia argilloso color grigio azzurro \$\frac{1}{2}\$ limo con argilloso color grigio verdas (26.10) \$\frac{1}{2}\$ limo sabbia con terrevali losi color parasi (colo	T			continuo		T	SPT	Campion			Cass.	Falda	Piezometro
Terreno di riporto costituito da limo sabbios de delmente giaioso (giniaia eterometrica de deterogenea, prevalentemente oficiolitica) color marrone brunastro 2 de Ghiaia fine eterogenea limoso sabbiosa e sabiia con ghiaia 3.00 3.50 Limo sabbioso debolmente ghiaioso color marrone brunastro Limo con ghiaia eterometrica ed eterogenea aggilloso color marrone Limo con argilla debolmente ghiaioso color marrone Limo con argilla seterometrica ed eterogenea aggilloso sabbia alimosa color marrone Sabbia limosa color marrone Sabbia limosa; matrice color marrone 13.00 Sabbia con ghiaia eterogenea, da arrotondata a subspigolosa, con sabbia aggilloso color marrone Limo sabbioso e con sabbia argilloso talora debolmente grigastro Ghiaia eterometrica e ciottoli, da arrotondata a subspigolosa, con ghiaioso color marrone grigiastro Ghiaia eterometrica e ciottoli, da arrotondata a subspigolosa, con sabbia limosa, eterogenea, limosa debolmente sabbioso debolmente grigastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigastro Limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla color grigio verdasta sabio propinio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla limosa argillosa color grigio azzurro Limo con argilla limosa argillosa color grigio azzurro Limo con argilla limosa argillosa color grigio azzurro	00000	Terreno di	riporto costitui	ito da ghiai	e e sabb	ie d	i natura						I-
Sabbia con ghiaia fine eterogenea limoso sabbiosa e sabbia con ghiaia 3.00 Limo sabbioso debolmente ghiaioso color marrone brunastro Limo con ghiaia eterometrica ed eterogenea aggilloso color marrone Limo con ghiaia eterometrica ed eterogenea aggilloso Color marrone Limo con ghiaia eterometrica ed eterogenea aggilloso Sabbia limosa color marrone Sabbia limosa color marrone Chiaia fine eterogenea, da arrotondata a subspigolosa, con sabbia limosa; matrice color marrone 3.00 Sabbia con ghiaia fine eterogenea limosa color marrone Limo sabbioso e con sabbia argilloso talora debolmegue(cm ghiaioso color marrone grigiastro Limo sabbioso e con sabbia argilloso talora debolmegue(cm ghiaioso color marrone grigiastro Sabbia limosa color marrone grigiastro Sabbia limosa color marrone Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla debolmente sabbioso color grigio azzurro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla edelmente sabbioso color grigio azzurro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia aggillosa color marrone grigio azzurro Limo con argilla edelmente sabbioso color grigio azzurro	\$	Terreno di ghiaioso (ofiolitica ofiolitica ofiolitica	riporto costitui ghiaia eterometri) color marrone b	ito da limo ica ed eterc prunastro	sabbioso genea, p	deb reva	olmente lentemen	ite					==
Limo con ghiaia eterometrica ed eterogena aggilloso color marrone Limo con argilla debolmente ghiaioso color marrone Limo con ghiaia eterometrica ed eterogena aggilloso sabbia con ghiaia eterometrica ed eterogena aggilloso sabbia limosa color marrone Sabbia limosa color marrone Sabbia limosa; matrice color marrone Limo sabioso e con sabbia argilloso talora debolmegge(cm ghiaioso color marrone grigiastro Limo sabioso e con sabbia argilloso talora debolmegge(cm ghiaioso color marrone grigiastro Chiaia eterometrica e ciottoli, da arrotondata a subspigolosa, eterogenea, limosa debolmente sabbicaso (cm ghiaioso elemente) Sabbia limosa color marrone Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla e argilloso color grigio verdastra 60 Sabbia limosa, talora con elementi ghiaiosi color grazio color marrone un intervalli limosa argillosi color grigio color grigo color grigio color grigio color grigio color grigio color grig	% *** ***	Ghiaia fir limosa col	e eterogenea limo or marrone	oso sabbiosa			n ghiai	S					
Limo con argilla debolmente ghiaioso color marrone Limo con ghiaia eterometrica ed eterogenea 7 a giilloso sabbioso color marrone Sabbia limosa color marrone Sabbia limosa; matrice color marrone 13.00 Sabbia con ghiaia fine eterogenea limosa color marrone Limo sabbioso e con sabbia argilloso talora debolmegue(cm ghiaioso color marrone grigiastro Limo sabbioso e con sabbia argilloso talora debolmegue(cm ghiaioso color marrone grigiastro Ghiaia eterometrica e ciottoli, da arrotondata a subspigolosa, eterogenea, limosa debolmente sabbioso color marrone grigiastro Sabbia limosa color marrone Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla e argilloso sabbioso color grigic azzurro Limo con argilla e argilloso sabbioso color grigic azzurro Limo con argilla color grigio verdast grigio azzurro Limo con argilla color grigio verdast grigio azzurro Limo con argilla color grigio verdast grigio azzurro Sabbia limosa, talora con elementi ghiaiosi sparsi, color	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o.c.			6	00					5.00		
Sabbia limosa color marrone Sabbia limosa color marrone Limo sabbioso e con sabbia argilloso talora debolmente (cm ghiaioso color marrone grigiastro limosa color marrone subspigolosa, eterogenea, limosa debolmente sabbiosa (cm ghiaioso color marrone grigiastro limosa color marrone grigiastro limosa color marrone grigiastro limosa color marrone limosa debolmente sabbiosa (cm ghia) so per matrice color marrone limosa debolmente sabbiosa (cm ghia) so per marrone grigiastro limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla e argilloso color grigica azzurro limo con grigia azzurro limo con grigica azzurro limo con grigica azzurro lim	10 24 Cd 1	Limo con	arrone n argilla debolme ghiaia eterometr	nte ghiaios	o color n	00 narrc	ne						
Sabbia limosa; matrice color marrone 13.00 13.00 Limo sabbioso e con sabbia argilloso talora debolmegge(cm ghiaioso color marrone grigiastro 15.00 Ghiaia eterometrica e ciottoli, da arrotondata a sabbic sabic (cm ghiaioso subspigolosa, eterogenea, limosa debolmente sabbic sabic (cm ghiaioso grigio aczurro limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla debolmente sabbioso color grigio aczurro limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla sabbiosa e limo con sabbia argillosa color limo con argilla e argilloso color grigio azzurro Limo con argilla color grigio verdasta argillosi color marrone con intervalli limoso argillosi color grigio color gr											10.0	0	
Sabbia con ghiaia fine eterogenea limosa color marrone Limo sabbioso e con sabbia argilloso talora debolmente(cm ghiaioso color marrone grigiastro 16.00 15.50 pt 16.00 Ghiaia eterometrica e ciottoli, da arrotondata a sabbic sa; (cm g) 18.00 pc 18.00 pc Sabbia limosa color marrone 20.00 pc 19.00 Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro 19.00 pc 19.00 Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro 19.00 pc 19.00 pc 19.00 Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro 19.00 pc 23.00 pc 2		Ghiaia fin Sabbia lim	e eterogenea, da osa; matrice colo	arrotondata or marrone			osa, con						5.3 4.8
ghiaioso color marrone grigiastro Ghiaia eterometrica e ciottoli, da arrotondata a subspigolosa, eterogenea, limosa debolmente sabbic sa (cm 9) 18.00 pc Limo con argilla sabbiosa e limo con sabbia argillosa color marrone qrigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio	30.30 20.30	Sabbia con	ghiaia fine eter	ogenea limo	sa color	mar	rone						
Sabbia limosa color marrone Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigio azzurro Limo con argilla e argilloso sabbioso color grigio azzurro Limo con argilla e argilloso color grigio verdastra 600 Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio grigio	000000	Limo sabbi ghiaioso c	oso e con sabbia olor marrone grig	argilloso t giastro			30 (CM	S			15.0)	
Sabbia limosa color marrone Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla debolmente sabbioso color grigito azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color grigio azzurro Limo con argilla e argilloso sabbioso color grigio azzurro Limo con argilla e argilloso sabbioso color grigio azzurro 26.10 Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio		😘 subspigolo	sa, eterogenea, l	oli, da arr imosa debol	mente sal	bbid							
Limo con argilla debolmente sabbioso color grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa color marrone grigiastro Limo con argilla sabbiosa e limo con sabbia argillosa 20022 \$2.50 grigio azzurro Limo con argilla sabbiosa e limo con sabbia argillosa 20022 \$2.50 23.00 pc 23.00 Limo con argilla e argilloso sabbioso color grigio azzurro 26.10 Limo sabbioso argilloso color grigio verdastra 60 Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio	• • •	Sabbia lim	osa color marrone	!									
Limo con argilla sabbiosa e limo con sabbia arginli 66a2do 25.50 23.00 pc 23.00 Limo con argilla e argilloso sabbioso color grigio azzurro 26.10 Limo sabbioso argilloso color grigio verdastra 60 Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio	· ·	marrone gr Limo con Limo con	igiastro argilla debolment argilla sabbiosa	te sabbioso	color gi	90 191	azzurro)			20.00		
Limo sabbioso argilloso color grigio verdastra 60 Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio		Limo con a	argilla sabbiosa e	e limo con s	sabbia ar	goiol I	4 €a2∂o 2 i 23.00 Po	22.5	00				
Limo sabbioso argilloso color grigio verdastre 60 Sabbia limosa, talora con elementi ghiaiosi sparsi, color marrone con intervalli limoso argillosi color grigio		^			26	1.0	azzurro				25.00)	
azzurro. Presenza di livelli cementati arenacei tra 27,2-27,3 m, 27,65-27,8 m, 28,05-28,15 m, 28,6-28,8 m, 29,15-29,2, 29,8-29,85 e tra 29,95-30,0 m. (RM)		Sabbia lim	osa, talora con e n intervalli limo	lementi ghi	erdastra aiosi spa	.60 arsi,	i 0						
(05)	-	azzurro. P 27,2-27,3 29,15-29,2	resenza di livell m, 27,65-27,8 m, , 29,8-29,85 e tr	i cementati 28,05-28,15 a 29,95-30,	m, 28,6	1 tra -28,8	a 3 m,		(CS	(RM)		
30.00 30.00 30.00 30.00					30.					00			A 30.
ioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato, Rs-Rimaneggiato da SPT metro: ATA-Tubo Aperto, CSG-Casagrande razione:CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua	metro: ATA	-Tubo Aperto, CSG-Casag	rande	eggiato da SPT						Si	onda:Beret	ta T51	

PROVA PENETROMETRICA STATICA MECCANICA LETTURE CAMPAGNA E VALORI TRASFORMATI

CPT 032-2015 riferimento certificato nº 083/2015 n° verb.accett. 070 del 07/04/2015

07/04/2015 U.M.: kg/cm² Data esec.: Committente: West System srl 07/04/2015 Data certificato: Ampliamento scatolare Cantiere: Pagina: 1/17 Cecina - Ll Località: Elaborato: Falda: Assente

H = profondità

nota:

L1 = prima lettura (punta)
L2 = seconda lettura (punta + laterale)
Lt = terza lettura (totale)
CT =10,00 costante di trasformazione

qc = resistenza di punta

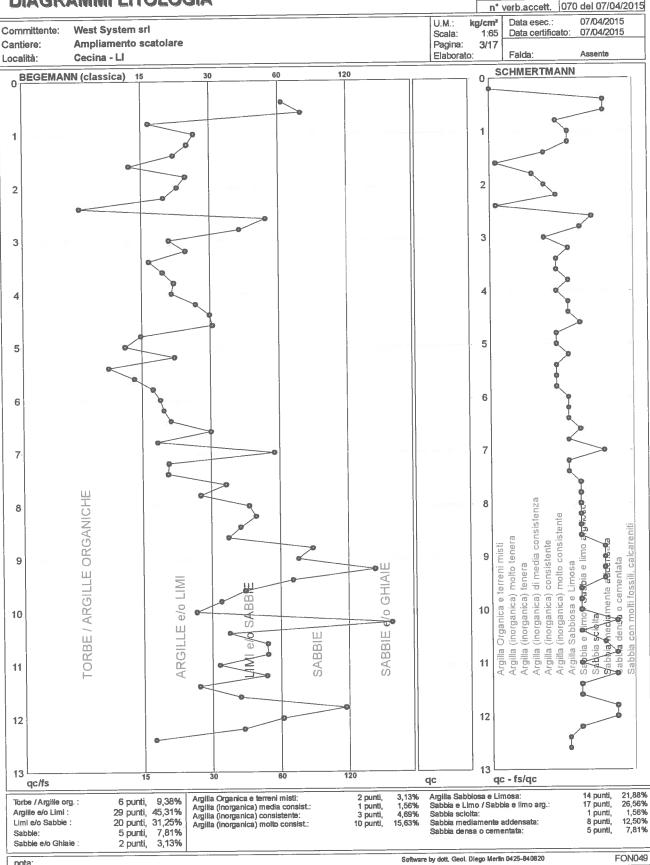
fs = resistenza laterale calcolata 0.20 m sopra quota qc

= rapporto Begemann (qc / fs) Rf = rapporto Schmertmann (fs / qc)*100

Software by dott. Geol. Diego Merlin 0425-840820

FON049

PROVA PENETROMETRICA STATICA MECCANICA 032-2015 riferimento DIAGRAMMI DI RESISTENZA E LITOLOGIA certificato nº 083/2015 n° verb.accett. 070 del 07/04/2015 kg/cm² U.M.: Data esec.: Committente: West System srl 1:65 Data certificato 07/04/2015 Scala: Cantiere: Ampliamento scatolare Pagina: 2/17 Quota inizio: Piano campagna Località: Cecina - Ll Elaborato: 10,0 180 200 6,7 litostratigrafia 160 100 120 140 0.20 66,0 56,0 1.13 08.0 1,33 22.0 17.0 ø,67 08,0 19,0 0.67 14.0 0,80 11,0 b.47 11,0 0,60 13,0 2 1,00 19.0 6,0 1,87 0.40 20.0 1.00 08,0 16.0 3 1.07 25,0 1,33 *\$*2.0 1,33 25.0 32,0 1,53 26.0 /1,27 1,13 29,0 1,33 39.0 1,33 40.0 3,67 56.0 49.0 3,73 5 5 2.00 3,47 00,8 43,0 2,93 50.0 2,73 50,0 6 6 2,80 53,0 2.67 ر 1.0گر 2,87 51,0 48.0 83.0 72.0 8,67 7,67 260.0 6,00 160.0 8 8 63,0 1,47 57.0 56.0-89,0 1,33 9 9 ø,67 93.0 1,07 2,67 86,0 100,0 3,93 10 10 _ 109,0 1,93 67,0 1,87 93.0 78,0 11 11 2,33 115,0 4.40 3/33 3,07 321.0 3,27 12 12 167,0 9.73 474.0 kg/cm² 20 200 kg/cm² 3,3 6,7 10,0 80 120 140 160 40 60 100 Preforo: Litologia: Personalizzata Corr.astine: kg/ml TG63-200 Penetrometro: Responsabile: Sig. Sandro Gorini Cod.ISTAT: 049007 Assistente: Cod. punta: FON049 Software by dott. Geol. Diego Mertin 0425-840820 nota:


1

CPT

nota:

PROVA PENETROMETRICA STATICA MECCANICA **DIAGRAMMI LITOLOGIA**

032-2015 riferimento certificato nº 083/2015 070 del 07/04/2015

PROVA PENETROMETRICA STATICA MECCANICA PARAMETRI GEOTECNICI

 CPT
 1

 riferimento
 032-2015

 certificato n°
 083/2015

 n° verb.accett.
 070 del 07/04/2015

 Committente:
 West System srl
 U.M.:
 kg/cm²
 Data esec.:
 07/04/2015

 Cantiere:
 Ampliamento scatolare
 Pagina:
 4/17
 Falda:
 Assente

Software by dott. Geol. Diego Merlin 0425-840820

FON049

PROVA PENETROMETRICA STATICA MECCANICA **LETTURE CAMPAGNA E VALORI TRASFORMATI**

2 CPT 032-2015 riferimento certificato nº 084/2015 n° verb.accett. 070 del 07/04/2015

FON049

07/04/2015 U.M.: Data esec. kg/cm² Committente: West System srl Data certificato: 07/04/2015 Ampliamento scatolare Cantiere: Pagina: 1/17 Località: Cecina - Ll Falda: Assente Elaborato:

Localita:		ecina - Li								Lia	porato:	Falda		Assente	
H	L1	L2	Lt	qc kg/cm²	fs kg/cm²	F -	Rf %	H m	L1	L2	Lt -	qc kg/cm²	fs kg/cm²	F -	Rf %
0.40 0.40 0.80 1,20 1,40 1,80 2,240 2,240 2,240 2,240 2,240 3,340 3,80 4,20 4,40 4,40 4,40 4,40 4,40 4,40 4,4	0.0 14.0 12.0 15.0 8,0 19.0 10.0 41.0 159.0 49.0 99.0 66,0 99.0 64.0 32.0 29.0 44.0 32.0 25.0 26.0 25.0 114.0 25.0 26.0 27.0 26.0 27.0 28.0 28.0 29.0 44.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	0.0 22.0 33.0 28.0 33.0 43.0 53.0 44.0 71.0 113.0 137.0 158.0 1137.0 158.0 1192.0 145.0 1192.0 145.0 1190.0 68.0 70.0 68.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 752.0 77.0 158.0 77.0 159.0 77.0 159.0 77.0 159.0 150.0 15		0.0 14.0 15.0 15.0 15.0 15.0 10.0 10.0 10.0 10	0.53 1.23 1.23 1.23 1.22 1.22 1.33 2.93 2.93 2.93 2.13 2.23 1.23 2.13 2.23 2.13 2.23 2.33 2.3	0 130 11 11 11 15 11 18 5 21 6 16 16 15 10 12 23 46 20 15 33 43 21 21 21 21 21 21 21 21 21 21 21 21 21	60.9.1.7.5.9.0.7.6.1.5.9.0.9.9.1.60.8.9.8.5.6.4.7.6.9.4.6.9.0.1.9.6.9.5.4.1.2.5.8.3.7.9.7.9.6.0.9.6.3.4.8.6.5.0.7.0.8.9.6.9.1.2.4.1.6.6.9.8.2.3.5.6.6.4.7.6.9.4.6.9.0.1.9.6.9.5.4.1.2.5.8.3.7.9.7.9.6.0.9.6.3.4.8.6.5.0.3.2.2.3.3.3.3.2.2.0.3.3.3.3.3.3.3.3.3								

H = profondità L1 = prima lettura (punta)

L2 = seconda lettura (punta + laterale)

Lt = terza lettura (totale) CT =10,00 costante di trasformazione

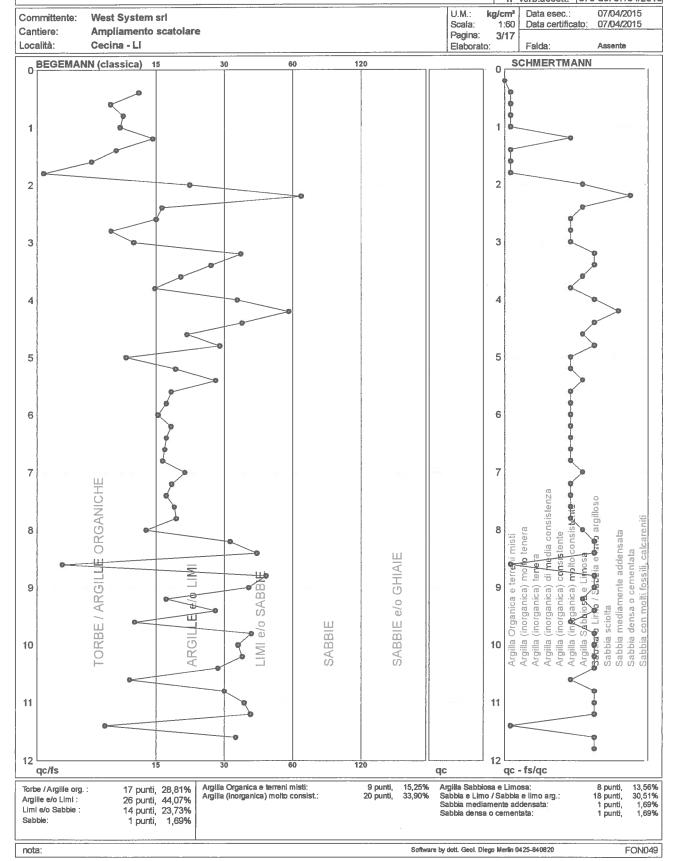
qc = resistenza di punta fs = resistenza laterale calcolata

0.20 m sopra quota qc = rapporto Begemann (qc / fs)

Rf = rapporto Schmertmann (fs / qc)*100

Software by dott. Geol. Diego Merlin 0425-840820 nota:

PROVA PENETROMETRICA STATICA MECCANICA 032-2015 riferimento DIAGRAMMI DI RESISTENZA E LITOLOGIA certificato nº 084/2015 n° verb.accett. 070 del 07/04/2015 U.M.: kg/cm² Data esec. 07/04/2015 West System srl Committente: Scala: 1:60 Data certificato: 07/04/2015 Ampliamento scatolare Cantiere: Pagina: 2/17 Quota inizio: Piano campagna Località: Cecina - Ll Elaborato: Falda: 160 180 200 10,0 litostratigrafia 100 120 140 fs m 0 qc 0.53 14.0 1,07 1.20 12.0 1,33 15.0 ø,73 81 1,27 19.0 24,0 2,27 19,0 2,00 10.0 1,93 41,0 2 159.0 4,53 4.47 5,87 5.93 103,0 91,0 94.0 114.0 2,93 34.0 5 28.0 ,07 29,0 2.47 2,47 42,0 2.80 44,0 6 1.80 .47 1,73 29.0 2,13 2,07 42.0 2,07 (,53 4,20 22.0 1.07 20,0 128.0 8 166.0 5,33 260.0 6.47 33,0 9 60.0 6,13 5.80 73,0 10 10 1,60 56.D 2,20 61,0 3,67 3.60 106.0 147.0 4.13 11 126,0 3/33 55,0 263,0 8.00 460,0 12 kg/cm² 3,3 kg/cm² 20 10,0 140 200 6,7 60 Preforo: Litologia: Personalizzata TG63-200 Corr.astine: kg/ml Penetrometro: Cod.ISTAT: 049007 Responsabile: Sig. Sandro Gorini Cod. punta: Assistente: Software by dott. Geol. Diego Mertin 0425-840820 FON049 nota


PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI LITOLOGIA

 CPT
 2

 riferimento
 032-2015

 certificato n°
 084/2015

 n° verb.accett.
 070 del 07/04/2015

PROVA PENETROMETRICA STATICA MECCANICA PARAMETRI GEOTECNICI

riferimento 032-2015
certificato n° 084/2015
n° verb.accett. 070 del 07/04/2015

Committente: West System srl

Cantiere: Ampliamento scatolare
Località: Cecina - Ll

U.M.: kg/cm² Data esec.: 07/04/2015
Data certificato: 07/04/2015
Pagina: 4/17
Elaborato: Falda: Assente

Cantiere: Località:	Ampli Cecin	iamento	scat	olare										Pagi	ina: orato	4/1		Falda:		A	sente	
Localita.	Cecili	id - Li				- N	ATIL	DA C)EGI	<u></u>		=						RAN	LIL A			
Prof. qc	qc/fs	zone	γ'	ი'vo	Vs	Cu	OCR	RA CO Eu50	Eu25	Mo	Dr			Ko	DB	DM	Me	FL1 F		E'50	E'25	Мо
m U.M. 0,20 —	_	222	t/m³ 1,85	U.M. 0.04	m/s	U.M.	%	U.M.	U.M.	U.M.	%	(°)	_	_	(°)	(°)	(°)	_	_	U.M. —	U.M.	U,M
0,40 14,0 0,60 12,0	13,1 10,0	2 = = = = = = = = = = = = = = = = = = =	1,85 1,85	0,07	150 141	0,64 0,57	92,5 48,7	108,2 97,1 113,3	162,3 145,7 170,0	48,2 44,6 49,5	_	=	Ξ	Ξ	_	=	=	_	=	_	-	=
0,80 15,0 1,00 8,0 1,20 19,0	11,3 11,0 15,0	2 ===	1,85 1,85 1,85	0,15 0,19 0,22	154 121 168	0,67 0,40 0,78	41,2 16,5 30,0	68,0 131,8	102,0 197,8	35,2 58,1	_	_	_	=	_	_	_	=	_	_	-	-
1,40 24,0 1,60 19,0	10,6 8,4		1,85 1.85	0,26 0,30	183 168	0,89	29,3 20,9	151,1 131,8	226,7 197,8 127,5	72,0 58,1 40,0	56 —	38	32	29	27	37	28		_	40,0	60,0	_
1,80 10,0 2,00 41,0 2,20 159,0 2,40 74,0	5,0 21,2 61,2	4 ~~~	1,85 1,85 1,85	0,33 0,37 0,41	132 224 374	0,50 1,37	10,4 32,1	85,0 232,3	348,5	123,0	66 100	39 43	33 39 35	30 37 32	28 34 30	38 43 39	30 36	_ _ _	_	68,3 265,0	102,5 397,5	123,0 477.0
2,60 69,0	16,3 15,4 10,1	4 ~~~	1,85 1,85 1,85	0,44 0,48 0,52	280 273 257	2,47 2,30 1,97	53,5 44,4 33,3	419,3 391,0 334,3	629,0 586,5 501,5	222,0 207.0 177,0	81 77 70	41 41 40	34	32 30	30	39 39 38	32 32 32	=	_	123,3 115,0 98,3	185,0 172,5 147,5	207,0
2,80 59,0 3,00 49,0 3,20 99,0	12,5 34.5	4 ~~~	1,85 1,85 1,85	0,56 0,59	240 313	1,63	24,2	277,7	416,5	147,0	62 84	39 41	32 35 37 35	29 32 34 32	28 27 30	36 39	31 34	Ξ	=	81,7 165,0	122,5 247,5	147.0 297.0
3,40 154,0 3,60 103,0 3,80 66,0	26,0 19,5 15,2	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.85	0,63 0,67 0,70	369 317 268	5,13 3,43 2,20	86,6 48,8 26,1	872,7 583,7 374,0	1309,0 875,5 561,0	462,0 309,0 198,0	98 83 66	43 41 39	37 35 32	32 29	32 30 28	41 39 37 38	36 34 32 33	_	_	256,7 171,7 110,0	385,0 257,5 165,0	309,0 198.0
4,00 91,0 4,20 94,0	33,3 54.3	3	1,85 1,85 1,85	0,74	303 307			=	=	=	66 76 76 82	40 40 41	34	29 31 31 32 28 25 23 25 25 25 22 22 23 24 24 22 20 20 20 20 20 20 20 20 20 20 20 20	28 29 29 27 26 23 22 24 23 23 22 20	38 38	33 34 34		=	151,7 156,7	227,5 235,0 285,0	273,0 282,0 342,0
4,40 114,0 4,60 76,0 4,80 64,0	34,9 20,7 28,2	4~~	1,85 1,85 1,85	0,81 0,85 0,89	330 283 265	2,53 2,13	24.5 18.8	430,7 362,7	646,0 544,0	228,0 192,0	66 60	39 38 36 34	32 31	29 28	27 26	38 39 36 35	33 32	Ξ	_	190,0 126,7 106,7	190.0 160.0	228,0 192,0
5,00 34,0 5,20 26,0	11,6 18.6	4 222	1,85 1,85	0.93	209 189 197	1,13 0,93	8,1 6,0	221,5 254,5	332.2 381.8	102.0 78.0 87.0	66 60 37 27 29 43	36 34	28 26 27	25 23	23 22 22	31	29 28 29 31	Ξ	_	56,7 43,3 48,3	85,0 65,0 72,5	102,0 78,0 87,0
5,40 29,0 5,60 44,0 5,80 42,0	27,1 17,8 17,0	4 %%	1,85 1,85 1,85	1,00 1,04 1,07	230	0,98 1,47 1,40	6,2 9,7 8,8	262,3 250,9 254,2 263,0	393,5 376,4 381,3	132,0 126,0	40	35 36 36	28 28	25 25	24 23	30 32 32 32 32 30 28	30	Ξ		73,3 70,0 73,3	110,0 105,0 110,0	132,0
6,00 44.0 6,20 32.0 6,40 25,0	15,7 17,8	4 %	1,85 1,85 1,85	1,11 1,15	226 230 204	1,47 1.07	8,9 5,7 4,5	263,0 307,6 330,2	394,5 461,4 495,2	132,0 96,0 75,0	41 29 20 25 30	36 35	28 26	25 23	23 22 20	32 30	31 29 28	=	_	73,3 53,3 41,7	110,0 80.0 62,5	132,0 96,0 75,0
6,40 25,0 6,60 29,0 6,80 35,0	17,0 16,8 16,4	4 ~~~ 4 ~~~ 4 ~~~	1,85 1,85 1,85	1,18 1,22 1,26	186 197 211 226	0,91 0,98 1,17	4,5 4,8 5,7	338,8 337,7	508,3 506,5	87,0 105,0	25 30	35 34 34 35	26 26	22 23	21 22	29 30	29 29	=	_	48,3 58,3	72,5 87,5	87,0 105,0
7,00 42,0 7,20 37,0	20,3 17,9	4 7470 4 7470 4 7470	1,85 1,85	1,22 1,26 1,30 1,33	216	1,40 1,23 0,93	6,9 5,7 3,9	326,3 357,7 384,6	489,4 536,6 576,9	126,0 111,0 78,0	36 31 18	36 35 33 33	27 26 24	24 23 21	21 22 22 22 20 19	31 30 28	30 30 28	_	=	70,0 61,7 43.3	105,0 92,5 65,0	111,0
7,60 22,0 7,80 20,0	17,0 18,3 18,7	4 74,70	1,85 1,85 1,85 1,85	1,37 1,41 1,44	189 177 171	0.85 0.80	3,3 3,0	394,0 394,4	591,0 591,7	66,0 60,0	12 8	32	32 34 32 32 32 26 27 28 28 28 26 26 27 26 26 27 26 27 26 27 27 28 28 28 26 26 26 26 26 26 26 26 26 26 26 26 26	19	18	30 28 27 26	28 28 27	_	=	43.3 36,7 33,3	55,0 50.0	66,0
8,00 128,0 8,20 166,0 8,40 260,0	14,0 31,1	4 ~ ~ ~ 3	1.85 1.85 1.85	1,48 1,52 1,55	344 380 450	4,27	23,6	725,3	1088,0	384,0	71 79 94	40 41 43	32 33 35	29 30 32	27 28 30	36 37 39	35 37 40	=	=	276,7 433,3	415,0 650,0	498,0 780,0
8,80 146,0	40.2 6,3 43,8	4 ~~~ 3	1,85 1,85	1,59 1,63	207 362	1,10	4,0	444,9 —	667,3	99,0	94 23 73	34 40	33 35 25 32	30 32 22 29 23 24 30 25 30 26 23 24 22 26	20 27 21 23 28	28 36 29 31 37	29 36	_	_ _ _	55,0 243,3 70,0	82.5 365,0 105,0	99,0 438,0
9,00 42,0 9,20 60,0 9,40 166,0	37,2 17,0 27,1 12,6		1,85 1,85 1,85	1,67 1,70 1,74	226 259 380	2,00 5,53	7.7 26.7	413,4 940,7	620,2 1411,0	180,0 498,0	30 41 76	35 36 40	26 27 32 28	23 24 30	23 28	31 37	30 32 37	- - - - -	=	100.0 276.7	150,0 415,0	180,0
9,60 73,0 9,80 203,0	12,6 38,1	4 ~~~	1,85 1,85	1,78 1,81	279 410	2,43	9,3	423,6	635,4	219,0	47	37 41 37	28 33	25 30	24 28 24 22 22 21 25	32 38 33	32 38 33	=	_	121,7 338,3 138,3	182,5 507,5 207,5	609,0
10,00 83,0 10,20 56,0 10,40 61,0	38,1 33,6 35,0 27,7	3	1,85 1,85 1,85	1,85 1,89 1,92	293 252 260	2,03	6,7	489,8	734,8	183,0	82 51 37 39 27 57	36 36	33 29 27 27 25 29	23 24	22 22	30 31 29 33	31 32	_	_	93,3 101,7	140,0 152,5	168,0 183,0
10,60 44,0	29.4	4 ~~~	1,85 1,85	1,96	230 321	1.47 3,53	4.4 12,8	547,5 600,7	821,3 901,0	132,0 318,0	27 57 68	35 38 39	25 29 31	22 26 28	21 25	29 33	31 34 36	Ξ	=		110,0 265,0 367,5	0,818
11,00 147,0 11,20 126,0 11,40 55,0	35.6 37.8 9,5	3	1,85 1,85 1,85	2,04 2,07 2,11 2,15	363 342 251	1,83	5,3	576,8	865,2	165,0	62 33	39 35	30 26	27 23	26 25 21	35 34 29	35 31	_	Ξ	210,0	315,0 137,5	378,0 165,0
11,60 263,0 11,80 460,0	32,9	4 ~~~ 3 3	1,85 1,85	2,15 2,18	452 558	_	=	=	Ξ	=	87 100	42 43	34 36	31 34	29 31	38 40	40 40		_	438,3 766,7	657,5 1150,0	789,0 1380,0
												Softwa	are by	dott. 0	Geol. Di	ego Me	rlin 04	25-840820				ON049

Committente:

TECNA S.n.c.

CONSULENZA GEOTECNICA SU PROVE DI LABORATORIO

Cantiere: - Cecina Nord (LI)

Verbale di Accettazione: 323

Il Responsabile del Laboratorio Dr.ssa Assunta Sfalanga

Assute Splange

Il Direttore del Laboratorio Prof. Luigi Carmignani

San Giovanni Valdarno (AR), 05 Giugno 2015

Laboratorio di Meccanica delle Terre

INDICE GENERALE

TABELLA RIASSUNT	TIVA		Pag.	1
SONDAGGIO 1 CA	AMP. 1 m 4.0	00-4.50	Pag.	2
SONDAGGIO 1 CA	MP. 4 m 22	.50-23.00	Pag.	45

TABELLA RIASSUNTIVA

OIĐĐADNOS	САМРІОИЕ	ько гои ріть'	стоттого	AIAIHĐ	SABBIA	ГІМО	АЗІГГА	Contenuto d'acqua	1	LP	IP	ib osəq əmulov	S	Ð	U	EDO	EIL
+ +	ż	(m)	%	%	%	%	%	%	%	%	%	kN/m ³			кРа		кРа
	_	4.00 – 4.50	0.0	3.4	30.2	34.9	31.5	17.0	34.8	22.8	12.1	20.6	2.73	25	22	×	549
+	4	22.5 – 23.0	0.0	0.8	20.4	9.99	12.2	21.0	22.9	20.6	2.3	19.7	2.72	30	က	×	39
<u> </u>	lità: ' 05/0(Località: TECNA S.n.c. – Cecina Nord (LI) Data: 05/06/2015	- Cecii	na No	rd (LI)												

Verbale accettazione: 323

Università degli Studi di Siena _ CGT - Centro di GeoTecnologie _ Laboratorio di Meccanica delle Terre Via Bruxelles n. 10 -12, Zona Industriale Bomba _ 52022 Cavriglia (AR) Tel. 055-4650088 / 3391366299 _ Fax. 055-9119439 www.geotecnologie.unisi.it

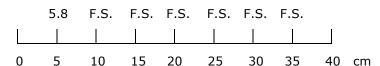
DESCRIZIONE E RIPRESA FOTOGRAFICA DELLA CAROTA ESTRUSA

Committente: Tecna S.n.c.

Cantiere/Località: Cecina nord (LI)

Sondaggio: 1 Campione: 1

Profondità prelievo: 4.00-4.50 Data prelievo: 08/04/2015 Data apertura: 28/04/2015


Verbale accettazione n° 323

Descrizione: Limo con argilla con sabbia. Presenza di inclusi carbonatici. (Raccomandazioni AGI

1977).

Colore: HUE 10YR VALUE 4 CHROMA 3 - Brown (Munsell Soil Color Chart)

Pocket (kg/cm²):

Lunghezza carota: 38 cm
Diametro carota: 88,9 mm

PARAMETRI ALL'APERTURA	Valore
W - Contenuto naturale d'acqua (%)	17.0
ρ_w - Densità umida (g/cm³)	2.09
ρ_D - Densità secca (g/cm ³)	1.79
ρ _{sat} - Densità satura (g/cm³)	2.13
$oldsymbol{arTheta_ au}$ - Porosità Totale (adim.)	0.34
e - Indice dei vuoti (adim.)	0.51
S_r - Grado di saturazione (%)	90.6

Modalità di prelievo: sondaggio a rotazione

Tipo di fustella: Shelby

Classe di qualità del campione: Q4 (Raccomandazioni AGI 1977)

C2 (Eurocodice 7)

Prove eseguite:

riove eseguite.					
Cont. Acqua W	X	Granulom. Gr	X	T. Residuo TR	•
Peso Volume y	X	Compress. ELL	X	Triass. TX UU	-
Peso Specifico Gs	X	Edometria Ed	X	Triass. TX CU	-
Limiti Cons. LL	X	T. Diretto TD	X	Triass. TX CD	-

Committente	Tecna S.n.c.	pagina 1 di 2
Cantiere	Cecina Nord	<u> </u>

PESO SPECIFICO DEI GRANI

Norma di riferimento ASTM D5550-00

Data prova	08/05/2015
Data certificato	05/06/2015
Verb. Accettazione	323
N. certificato	5367/2015

AccuPyc II 1340 V1.00

Unit 1

Serial #: 488

Page 1

Sample: S1_1 4,00-4,50 Operator: ELONA XHIXHA

Submitter: Bar Code:

File: C:\...\VA323\S1_1.SMP

Analysis Gas: Helium

Reported: 08/05/2015 11.00.01

Sample Mass: 9.6930 g Temperature: 24.70 °C Number of Purges: 5 Analysis Start: 08/05/2015 10.30.45 Analysis End: 08/05/2015 11.00.00

Equilib. Rate: 0.005 psig/min Expansion Volume: 9.2248 cm³ Cell Volume: 11.8010 cm³

Comments: VA 323, TECNA S.N.C., CECINA NORD, 4,00 - 4,50

SONDAGGIO 1 CAMPIONE 1,

PROF. (m)

Tahular 1

Combined Report

			rapular	1			
Cycle#	Volume (cm³)	Volume Deviation (cm³)	Density (g/cm³)	Density Deviatio (g/cm³)	n	Total Pore Volume (cm³)	Total Pore Volume Deviation (cm³)
1	3.5810	-0.0037	2.7068	0.	0028	0.1068	0.0004
2	3.5883	0.0037	2.7012	-0.	0028	0.1060	-0.0004
	27	Summary Data	79 10	Average		ındard viation	
	Volur Dens Total		2.7	5847 cm³ 7040 g/cm³ 064 cm³	0.003 0.0028 0.0004	3 g/cm³	

Note: Gh = 2.70 $Gs^* = 2.73$

Gh = valore misurato

Gs* = valore corretto (Richards&Bouazza 2007)

Il direttore del Laboratorio

Lo sperimentatore

3

Committente	Tecna S.n.c.	pagina 2 di 2
Cantiere	Cecina Nord	

PESO SPECIFICO DEI GRANI

Norma di riferimento ASTM D5550-00

Data prova	08/05/2015
Data certificato	05/06/2015
Verb. Accettazione	323
N. certificato	5367/2015

AccuPyc II 1340 V1.00

Unit 1

Serial #: 488

Page 2

Sample: S1_1 4,00-4,50 Operator: ELONA XHIXHA

Submitter:

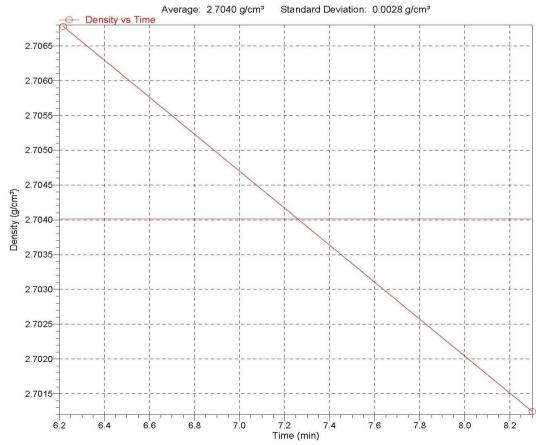
Bar Code:

File: C:\...\VA323\S1_1.SMP

Analysis Gas: Helium

Reported: 08/05/2015 11.00.01 Sample Mass: 9.6930 g Temperature: 24.70 °C

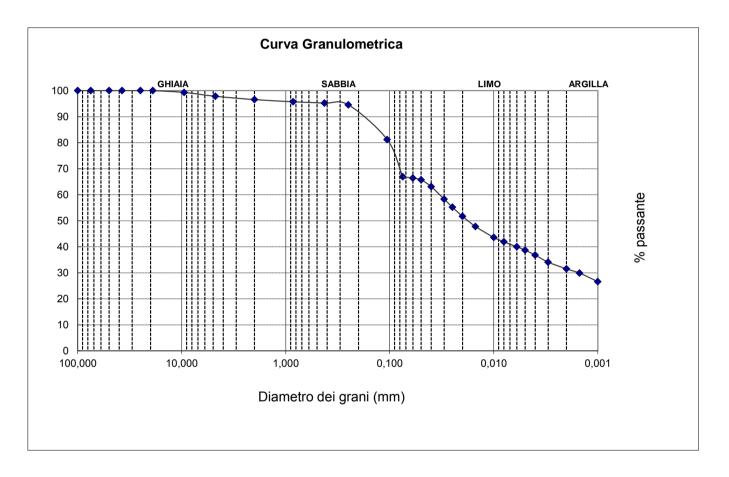
Number of Purges: 5


Analysis Start: 08/05/2015 10.30.45 Analysis End: 08/05/2015 11.00.00 Equilib. Rate: 0.005 psig/min Expansion Volume: 9.2248 cm³

Cell Volume: 11.8010 cm³

Comments: VA 323, TECNA S.N.C., CECINA NORD, SONDAGGIO 1 CAMPIONE 1, 4,00 - 4,50

PROF. (m)


Density vs Time

Il direttore del Laboratorio

Committente	Tecna S.n.c.				
Cantiere	Cecina Nord				
Data prava	07/05/2015				Dog 4 di 4
Data prova	07/05/2015	<u></u>			Pag. 1 di 4
Data certificato	04/06/2015				
Verb.Accettazione	323				
N. Certificato	5363/2015				
Sondaggio	1	Campione 1	Profondità	4,00 - 4,50	

ANALISI GRANULOMETRICA (ASTM D422 - C958 -E1617)

Riepilogo dei risultati

Ciottoli	(> 60 mm)	0,0
Ghiaia	(60 - 2 mm)	3,4
Sabbia	(2 - 0,060 mm)	30,2
Limo	(0,060 - 0,002 mm)	34,9
Argilla	(< 0,002 mm)	31,5

D10	<0.001
D50	0,0078
D60	0,0335
UC	>33.5

Classificazione AGI 1994

Il direttore del Laboratorio

A MANA

Committente	Tecna S.n.c.					
Cantiere	Cecina Nord			- -		
	07/05/0045					
Data prova	07/05/2015					Pag. 2 di 4
Data certificato	04/06/2015					
Verb.Accettazione	323					
N. Certificato	5363/2015					
Sondaggio	1	Campione	1	Profondità	4,00 - 4,50	

ANALISI GRANULOMETRICA (ASTM D422 - C958 -E1617)

Setacciatura grossa:

Massa materiale (g): 2642,13

Setacciatura fine:

Massa materiale (g): 191,3

Vagli	Apertura	Massa	Trattenuto	Passante
	vagli	Trattenuta		
ASTM	(mm)	(g)	%	%
3"	75,000	0,00	0,0	100,0
2"	50,000	0,00	0,0	100,0
1,5"	37,500	0,00	0,0	100,0
1"	25,000	0,00	0,0	100,0
3/4"	19,000	0,00	0,0	100,0
3/8"	9,500	18,24	0,7	99,3
No.4	4,750	2,86	2,2	97,8
No.10	2,000	2,44	3,4	96,6
No.20	0,850	1,60	4,3	95,7
No.40	0,425	1,00	4,8	95,2
No.60	0,250	1,29	5,5	94,5
No.140	0,106	25,68	18,8	81,2
No.200	0,075	27,56	33,1	66,9

Sedigrafia:

Material Mass (g): 5,013

Material/Liquid: soil / 0.20% Sodium Metaphosphate (w/w)
Measurement Principle: X-Ray monitored gravity sedimentation
Calculation Method: Stokes sedimentation and Beer's law of extinction

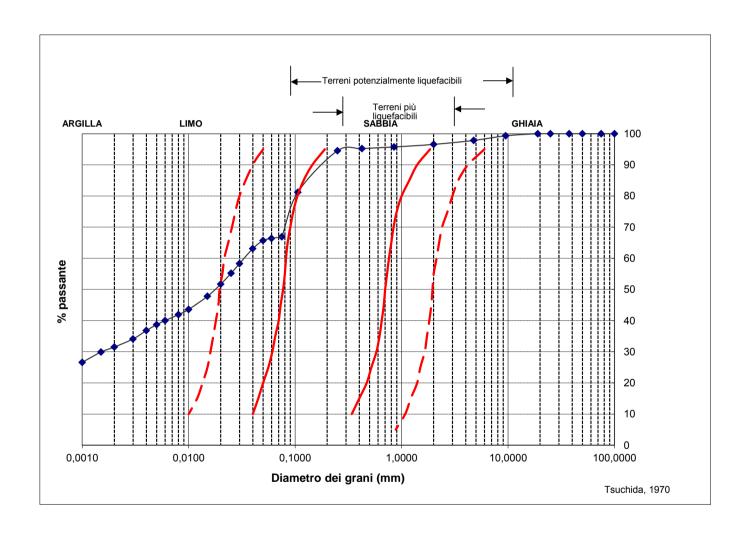
Test Number: 1

Analyzed: 12/05/2015 10.36.56
Reported: 12/05/2015 15.50.40
Liquid Visc: 0.7226 mPa·s
Analysis Temp: 35.0 °C

Analysis Temp: 35.0 °C
Full Scale Mass: 66.9 %
Analysis Type: High Spec

Analysis Type: High Speed(Adj)
Run Time: 0:04 hrs:min
Sample Density: 2.704 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 129 / 84 kCnts/s

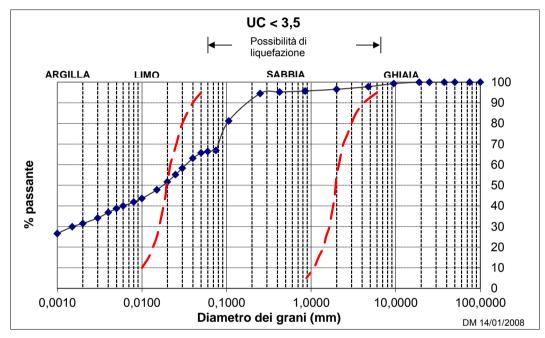
Reynolds Number: 0.91

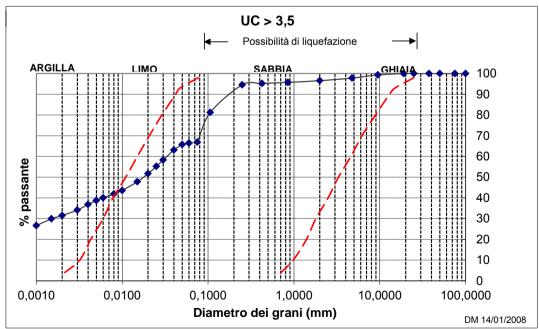

Diametro	Trattenuto	Passante
(mm)	%	%
0,060	33,6	66,4
0,050	34,3	65,7
0,040	36,9	63,1
0,030	41,7	58,3
0,025	44,8	55,2
0,020	48,3	51,7
0,015	52,2	47,8
0,010	56,4	43,6
0,008	58,1	41,9
0,006	60,0	40,0
0,005	61,3	38,7
0,004	63,2	36,8
0,003	65,9	34,1
0,002	68,5	31,5
0,002	70,1	29,9
0,001	73,4	26,6

II direttore del Laboratorio

Lo sperimentatore,

Committente	Tecna S.n.c.						
Cantiere	Cecina Nord				_		
Data prova	07	/05/2015					Pag. 3 di 4
Data certificato		/06/2015					1 ag. 5 al 4
Verb.Accettazione		323					
N. Certificato	53	363/2015					
Sondaggio	1		Campione	1	Profondità	4,00 - 4,50	


POTENZIALE DI LIQUEFACIBILITA'



/ II, direttore del Laboratorio

Committente	Tecna S.n.c.					,
Cantiere	Cecina Nord					
Data prova	07/05/2015					Pag. 4 di 4
Data certificato	04/06/2015					J
Verb.Accettazione	323					
N. Certificato	5363/2015					
Sondaggio	1	Campione	1	Profondità	4,00 - 4,50	

SUSCETTIBILITA' ALLA LIQUEFAZIONE (NTC 2008)

Il direttore del Laboratorio

to sperimentatore.

Committente	Tecna S.n.c.
Cantiere	Cecina Nord (LI)

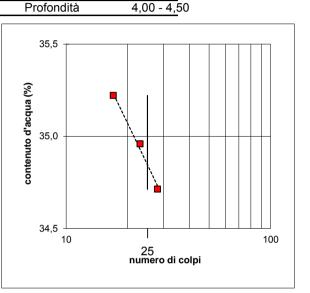
Pag. 1 di 1

Data prova	12/05/15	
Data certificato	04/06/15	
Verb.Accetazione	323	
N. Certificato	5365/2015	

LIMITI DI CONSISTENZA

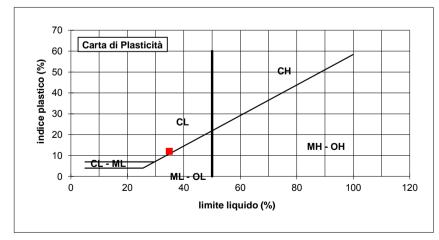
Contenuto d'acqua

Norma di riferimento ASTM D4318


Sondaggio	1 Campione 1				
Limite Liquido				34,8	
Numero tara		A04	B15	B36	
Numero dei colpi		28	23	17	
P. umido + tara	g	62,13	65,20	56,21	
P. secco + tara	g	50,64	52,87	46,26	
Peso tara	g	17,54	17,60	18,01	
Peso umido	g	44,59	47,60	38,20	
Peso secco	q	33.10	35,27	28,25	

34,71

34,96


Limite Plastico			22,8
Numero tara		B17	B30
P. umido + tara	g	30,35	28,49
P. secco + tara	g	27,97	26,45
Peso tara	g	17,47	17,55
Peso umido	g	12,88	10,94
Peso secco	g	10,50	8,90
Contenuto d'acqua	%	22,67	22,92

Umidità Naturale		
Numero tara		B27
P. umido + tara	g	51,98
P. secco + tara	g	46,97
Peso tara	g	17,57
Peso umido	g	34,41
Peso secco	g	29,40
Contenuto d'acqua	%	17,0

Limite Liquido LL	34,8
Limite Plastico LP	22,8
Indice di Plasticità Ip	12,1
Umidità Naturale Wn	17,0
Indice di Consistenza Ic	1,5

$$Ip = LL - LP$$
 $Ic = \frac{}{Ip}$

Limi inorganici di bassa plasticità

Limi inorganici di alta plasticità

Argille inorganiche di bassa plasticità

СН

Argille inorganiche di alta plasticità

OL

Argille organiche di bassa plasticità OH

Argille organiche di alta plasticità

Il direttore del Laboratorio

No sperimentatore

Authority

Author

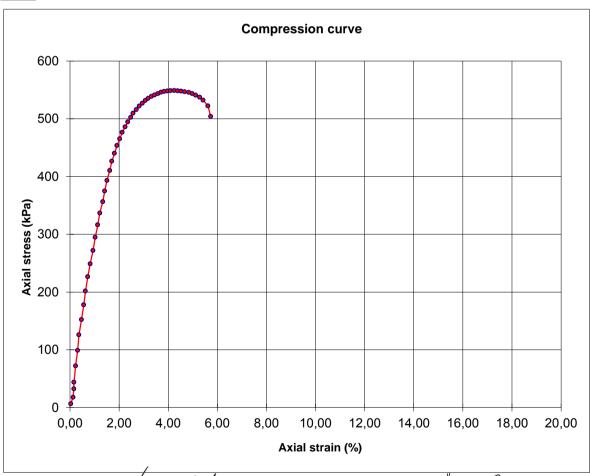
UNCONFINED COMPRESSION TEST

Ref. Standard: ASTM D2166

Committente	Tecna S.n.c.	
Cantiere	Cecina Nord	

Data prova	04/05/2015
Data certificato	04/06/2015
Verb.Accetazione	323
N. Certificato	5361/2015

Sondaggio	1 Ca	mpione 1	Profondità	4,00 - 4,50


Specimen diameter	38,20	mm
Specimen height	76,20	mm
Tare N.	B47	
Weight of tare	37,37	g
Weight of tare + wet specimen	216,25	g
Weight of tare + dry specimen	188,98	g
Test velocity	0,650	mm/min

Natural weight	178,88	g
Dry weight	151,61	g
Moisture content	17,99	%
Natural density	2,048	g/cm ³
Dry density	1,736	g/cm ³
Liquid Limit	35	%
Plastic Limit	23	%
Plasticity Index	12	%

Maximum strength	548,82	kPa	
Corresponding strain	4,25	%	

Pag. 1 di 2

note:

The Technician

The Laboratory Manager /

UNCONFINED COMPRESSION TEST

Ref. Standard: ASTM D2166

 Data prova
 04/05/2015

 Data certificato
 04/06/2015

 Verb.Accetazione
 323

 N. Certificato
 5361/2015

Committente Tecna S.n.c.
Cantiere Cecina Nord

Sondaggio 1 Campione 1 Profondità 4,00 - 4,50

Recorded Data

Pag. 2 di 2

load	displ.	stress	strain
N	mm	kPa	%
7,60	0,02	6,63	0,03
20,30	0,10	17,69	0,12
37,10	0,12	32,32	0,16
50,40	0,12	43,91	0,16
83,00	0,17	72,25	0,23
113,70	0,24	98,90	0,31
144,70	0,28	125,80	0,36
175,20	0,36	152,15	0,47
204,90	0,42	177,79	0,56
232,60	0,48	201,67	0,63
261,30	0,55	226,34	0,72
287,50	0,63	248,79	0,82
314,70	0,72	272,01	0,94
341,40	0,78	294,83	1,03
366,70	0,86	316,34	1,13
390,70	0,93	336,76	1,21
414,10	1,02	356,49	1,33
435,90	1,08	374,97	1,41
457,50	1,15	393,18	1,51
478,00	1,23	410,32	1,62
497,20	1,30	426,43	1,70
513,80	1,38	440,20	1,81
530,20	1,46	453,77	1,91
544,30	1,54	465,30	2,03
558,00	1,62	476,52	2,13
569,80	1,71	486,01	2,25
580,50	1,80	494,57	2,36
590,50	1,88	502,50	2,47
599,50	1,96	509,66	2,57
607,70	2,06	515,92	2,70
615,50	2,15	521,90	2,82
622,20	2,25	526,89	2,95
628,50	2,34	531,57	3,07
633,40	2,42	535,09	3,18
638,50	2,53	538,64	3,32
642,40	2,63	541,21	3,44
646,20	2,73	543,65	3,58
649,70	2,82	545,88	3,70
652,10	2,92	547,16	3,83
654,20	3,02	548,16	3,97
655,60	3,12	548,61	4,09
656,90	3,24	548,82	4,25
657,40	3,34	548,45	4,39
657,50	3,45	547,73	4,52
657,40	3,56	546,82	4,67

The Technician

The Laboratory Manager

UNCONFINED COMPRESSION TEST		
Ref. Standard: ASTM D2166	Data prova	04/05/2015
	Data certificato	04/06/2015
Committente Tecna S.n.c.	Verb.Accetazione	323
Cantiere Cecina Nord	N. Certificato	5361/2015

Recorded Data

load	displ.
N	mm
657,10	3,69
655,70	3,80
653,20	3,90
650,00	4,02
645,00	4,13
634,20	4,28
612.70	4.37

stress	strain
kPa	%
545,60	4,84
543,62	4,98
540,77	5,12
537,20	5,28
532,27	5,42
522,27	5,62
503,96	5,73

Pag. 3 di 3

Restituzione fotografica dopo la prova

The Technician

The Laboratory Manager /

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

Sample description Limo sabbio argilloso

Particle density (Mg/m³) 2.73 (Misurato)

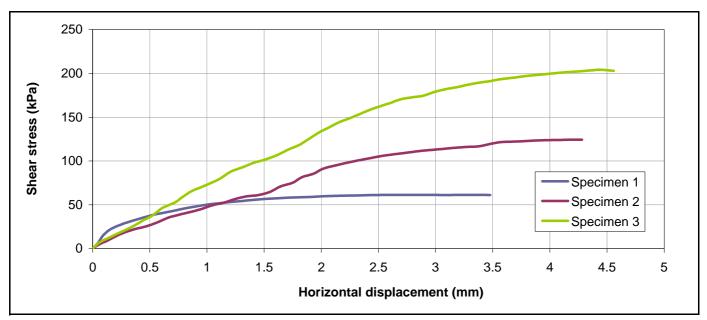
Specimens tested submerged

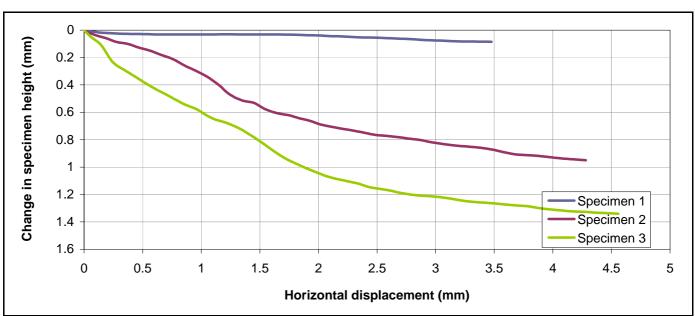
INITIAL CONDITIONS	Specimen 1	Specimen 2	Specimen 3
Specimen depth (m)	4.00/4.50	4.00/4.50	4.50/5.00
Height (mm)	20.0	20.0	20.0
Length (mm)	60.0	60.0	60.0
Width (mm)	60.0	60.0	60.0
Area (mm²)	3600.0	3600.0	3600.0
Moisture content (measured) (%)	18	17	19
Moisture content (trimmings) (%)	17	16	16
Bulk density (Mg/m³)	2.05	1.99	2.01
Dry density (Mg/m³)	1.74	1.69	1.69
Voids ratio	0.568	0.612	0.611
Degree of saturation (%)	84	77	84

Voids ratio at the end of	0.556	0.589	0.581
consolidation			

SHEARING			
Rate of displacement (mm/min)	0.039291	0.043496	0.013829
Conditions at peak shear stress			-
Normal stress (kPa)	100	200	400
Shear stress (kPa)	61	124	204
Horizontal displacement (mm)	2.98	4.28	4.45
Vertical deformation (mm)	0.075	0.950	1.336

Apparent cohesion (kPa)	21.6	
Angle of shearing resistance (°)	24.9	

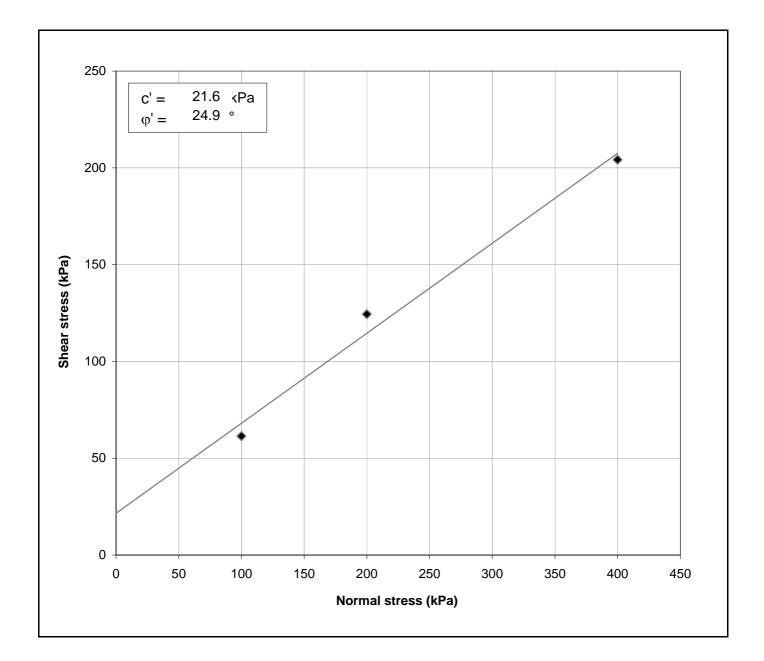

Comments / variations from procedures:


Verbale di Accettazion N. 323

Il presente certificato è costituito da 18 pagine.

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/06/2015	Date	05/06/2015	Date	N° 5370/2015

Project location	Cecina Nord - Cecina (L	<i>I)</i>	
Project reference	TECNA snc	Sample depth	4.00/4.50
Borehole number	1	Sample type	Undisturbed cohesive
Sample number	1	Specimen orientation	Vertical


Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/06/2015	Date	05/06/2015	Date	N° 5370/2015

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

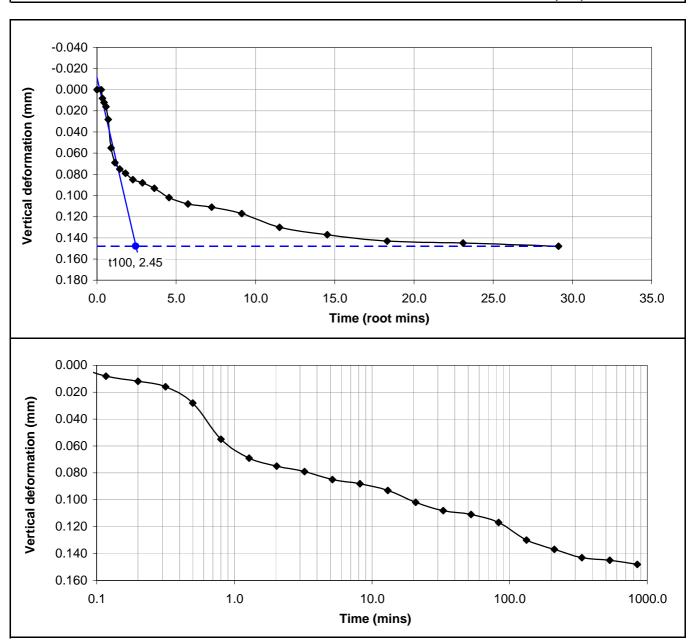
Sample number 1 Specimen orientation Vertical

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/06/2015	Date	05/06/2015	Date	N° 5370/2015

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive


Sample number 1 Specimen orientation Vertical

Red	corded data		Calculated data
Time	Vertical displacement	Time	Vertical deformation of specimen
(mins)	(mm)	(root mins)	(mm)
0.07	0.427	0.3	0.000
0.12	0.435	0.3	0.008
0.20	0.439	0.4	0.012
0.32	0.443	0.6	0.016
0.50	0.455	0.7	0.028
0.80	0.482	0.9	0.055
1.28	0.496	1.1	0.069
2.03	0.502	1.4	0.075
3.23	0.506	1.8	0.079
5.15	0.512	2.3	0.085
8.20	0.515	2.9	0.088
13.05	0.520	3.6	0.093
20.75	0.529	4.6	0.102
33.00	0.535	5.7	0.108
52.47	0.538	7.2	0.111
83. <i>4</i> 2	0.544	9.1	0.117
132.65	0.557	11.5	0.130
210.92	0.564	14.5	0.137
335.35	0.570	18.3	0.1 4 3
533.22	0.572	23.1	0.1 4 5
847.82	0.575	29.1	0.148

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type *Undisturbed cohesive*Sample number 1 Specimen orientation *Vertical*

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/05/2015	Date	05/06/2015	Date	N° 5370/2015

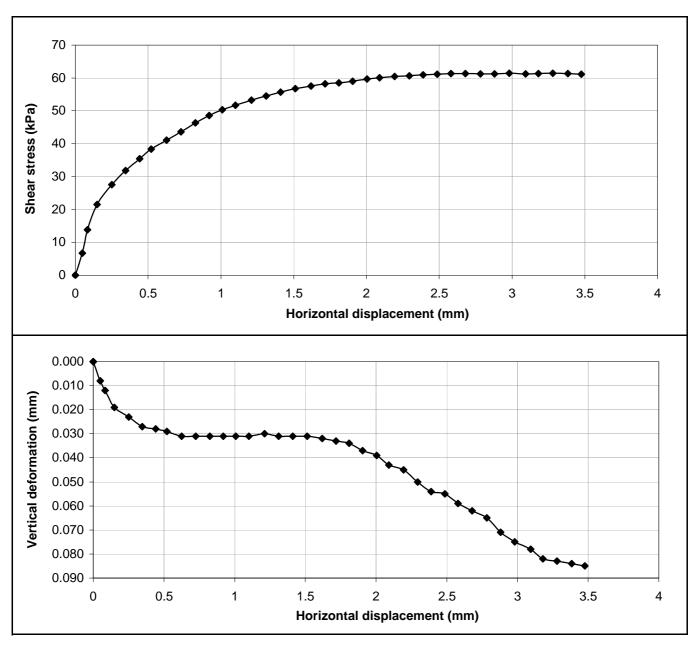
Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

	Record	led data		(Calculated dat	ta	
Elapsed	Vertical	Horizontal	Horizontal	Vertical deformation	Horizontal	Horizontal	Choor otropo
time	disp.	disp.	force	vertical delormation	disp.	force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
9.98	0.003	0.06	56.9	0.000	0.00	0.0	0.0
19.97	0.011	0.11	81.2	0.008	0.05	24.3	6.7
29.97	0.015	0.15	106.7	0.012	0.08	49.8	13.8
39.95	0.022	0.21	134.5	0.019	0.15	77.6	21.6
49.93	0.026	0.32	156.2	0.023	0.25	99.3	27.6
59.93	0.030	0.41	171.6	0.027	0.35	114.7	31.9
69.92	0.031	0.51	184.4	0.028	0.44	127.5	<i>35.4</i>
79.92	0.032	0.59	194.9	0.029	0.52	138.0	38.3
89.90	0.034	0.69	204.8	0.031	0.63	147.9	41.1
99.88	0.034	0.79	213.8	0.031	0.73	156.9	43.6
109.88	0.034	0.89	223.6	0.031	0.82	166.7	46.3
119.87	0.034	0.98	231.8	0.031	0.92	174.9	48.6
129.87	0.034	1.07	238.2	0.031	1.01	181.3	50.4
139.85	0.034	1.16	243.1	0.031	1.10	186.2	51.7
149.85	0.033	1.28	248.7	0.030	1.21	191.8	53.3
159.83	0.034	1.38	253.1	0.031	1.31	196.2	54.5
169.82	0.034	1.47	257.4	0.031	1.41	200.5	55.7
179.82	0.034	1.58	261.1	0.031	1.51	204.2	56.7
189.80	0.035	1.68	264.1	0.032	1.62	207.2	57.6
199.78	0.036	1.78	266.4	0.033	1.72	209.5	58.2
209.78	0.037	1.87	267.7	0.034	1.81	210.8	58.6
219.77	0.040	1.97	269.4	0.037	1.91	212.5	59.0
229.77	0.042	2.07	271.6	0.039	2.00	214.7	59.6
239.75	0.046	2.15	273.1	0.043	2.09	216.2	60.1
249.75	0.048	2.26	274.5	0.045	2.19	217.6	60.4
259.73	0.053	2.36	275.4	0.050	2.29	218.5	60.7
269.72	0.057	2.45	276.3	0.054	2.39	219.4	60.9
279.72	0.058	2.55	276.9	0.055	2.49	220.0	61.1
289.70	0.062	2.64	277.8	0.059	2.58	220.9	61.4
299.70	0.065	2.74	277.7	0.062	2.68	220.8	61.3
309.68	0.068	2.85	277.5	0.065	2.78	220.6	61.3
319.67	0.074	2.95	277.5	0.071	2.88	220.6	61.3
329.67	0.078	3.05	278.1	0.075	2.98	221.2	61.4
339.65	0.081	3.16	277.4	0.078	3.09	220.5	61.2


Project location Cecina Nord - Cecina (LI)

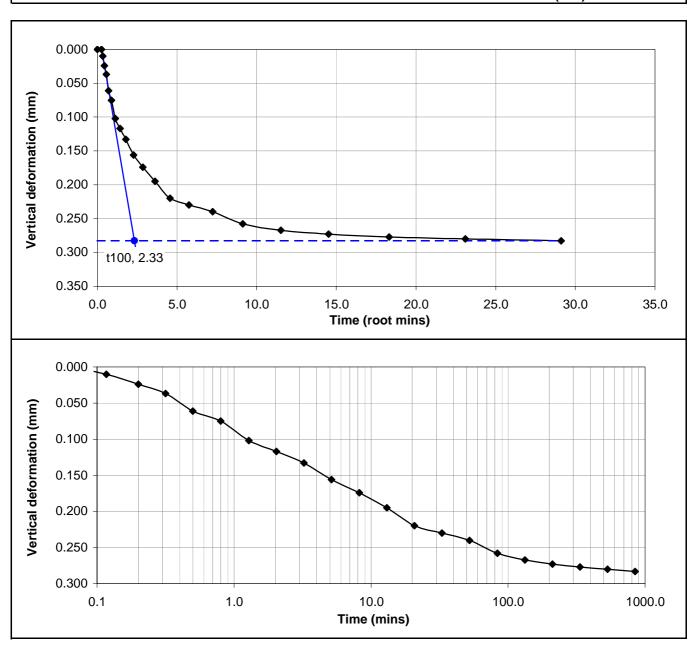
Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

	Record	ed data		Calculated data			
Elapsed time	Vertical disp.	Horizontal disp.	Horizontal force	Vertical deformation	Horizontal disp.	Horizontal force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
349.63	0.085	3.25	277.7	0.082	3.18	220.8	61.3
359.63	0.086	3.34	278.0	0.083	3.28	221.1	61.4
369.62	0.087	3.45	277.7	0.084	3.39	220.8	61.3
379.62	0.088	3.54	277.1	0.085	3.48	220.2	61.2

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani	
Date	04/05/2015	Date	05/06/2015	Date	N° 5370/2015	


Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

Rec	orded data		Calculated data
Time	Vertical displacement	Time	Vertical deformation of specimen
(mins)	(mm)	(root mins)	(mm)
0.07	0.765	0.3	0.000
0.12	0.775	0.3	0.010
0.20	0.789	0.4	0.024
0.32	0.802	0.6	0.037
0.50	0.826	0.7	0.061
0.80	0.840	0.9	0.075
1.28	0.867	1.1	0.102
2.03	0.882	1.4	0.117
3.23	0.898	1.8	0.133
5.15	0.921	2.3	0.156
8.20	0.939	2.9	0.174
13.05	0.960	3.6	0.195
20.75	0.985	4.6	0.220
33.00	0.995	5.7	0.230
52.47	1.005	7.2	0.240
83. <i>4</i> 2	1.023	9.1	0.258
132.65	1.032	11.5	0.267
210.92	1.038	14.5	0.273
335.35	1.042	18.3	0.277
533.22	1.045	23.1	0.280
847.82	1.048	29.1	0.283

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	05/05/2015	Date	05/06/2015	Date	N° 5370/2015

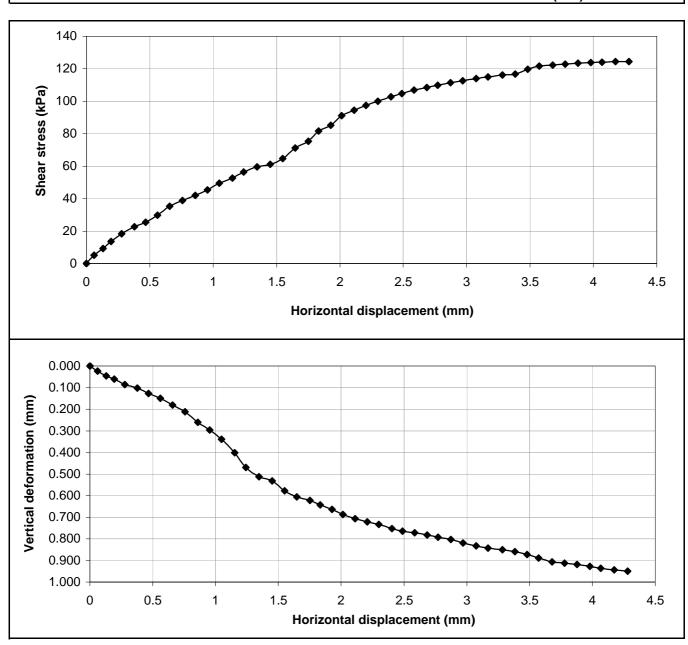
Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

	Record	led data		(Calculated da	ta	
Elapsed time	Vertical disp.	Horizontal disp.	Horizontal force	Vertical deformation	Horizontal disp.	Horizontal force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
9.98	0.012	0.06	11.0	0.000	0.00	0.0	0.0
19.97	0.036	0.12	29.3	0.024	0.06	18.3	5.1
29.97	0.058	0.19	44.6	0.046	0.13	33.6	9.3
39.95	0.073	0.26	59.7	0.061	0.19	48.7	13.5
49.93	0.098	0.34	77.1	0.086	0.28	66.1	18.4
59.93	0.114	0.44	92.4	0.102	0.38	81.4	22.6
69.92	0.139	0.53	102.3	0.127	0.47	91.3	25. <i>4</i>
79.92	0.162	0.62	118.1	0.150	0.56	107.1	29.8
89.90	0.193	0.72	137.8	0.181	0.66	126.8	35.2
99.88	0.224	0.82	150.7	0.212	0.76	139.7	38.8
109.88	0.272	0.92	162.5	0.260	0.86	151.5	42.1
119.87	0.309	1.02	174.2	0.297	0.95	163.2	45.3
129.87	0.351	1.11	189.2	0.339	1.05	178.2	49.5
139.85	0.414	1.21	200.3	0.402	1.15	189.3	52.6
149.85	0.481	1.30	214.1	0.469	1.24	203.1	<i>56.4</i>
159.83	0.525	1.41	225.7	0.513	1.35	214.7	59.6
169.82	0.544	1.51	231.0	0.532	1.45	220.0	61.1
179.82	0.590	1.61	243.5	0.578	1.55	232.5	64.6
189.80	0.618	1.71	267.3	0.606	1.65	256.3	71.2
199.78	0.634	1.81	281.9	0.622	1.75	270.9	75.3
209.78	0.655	1.90	305.1	0.643	1.83	294.1	81.7
219.77	0.675	1.99	317.7	0.663	1.93	306.7	85.2
229.77	0.700	2.08	339.3	0.688	2.02	328.3	91.2
239.75	0.718	2.17	351.3	0.706	2.11	340.3	94.5
249.75	0.733	2.27	361.8	0.721	2.21	350.8	97.4
259.73	0.746	2.36	371.0	0.734	2.30	360.0	100.0
269.72	0.764	2.47	380.5	0.752	2.40	369.5	102.6
279.72	0.777	2.55	388.1	0.765	2.49	377.1	104.8
289.70	0.784	2.65	395.7	0.772	2.59	384.7	106.9
299.70	0.794	2.75	401.4	0.782	2.69	390.4	108.4
309.68	0.804	2.83	406.5	0.792	2.77	395.5	109.9
319.67	0.815	2.94	412.4	0.803	2.87	401.4	111.5
329.67	0.831	3.03	416.6	0.819	2.97	405.6	112.7
339.65	0.845	3.14	421.1	0.833	3.08	410.1	113.9


Project location Cecina Nord - Cecina (LI)

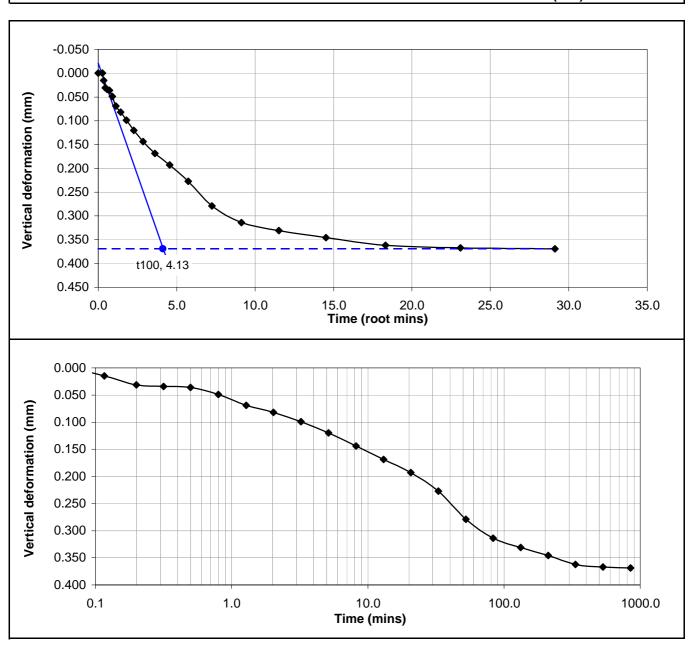
Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

Record	led data		(Calculated dat	ta	
Vertical disp.	Horizontal disp.	Horizontal force	Vertical deformation	Horizontal disp.	Horizontal force	Shear stress
(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
0.855	3.23	424.9	0.843	3.17	413.9	115.0
0.863	3.35	<i>4</i> 28.8	0.851	3.28	417.8	116.1
0.871	3. <i>4</i> 5	431.5	0.859	3.38	420.5	116.8
0.884	3.54	441.8	0.872	3. <i>4</i> 8	430.8	119.7
0.901	3.63	448.7	0.889	3.57	437.7	121.6
0.919	3.74	451.1	0.907	3.68	440.1	122.3
0.925	3.84	<i>4</i> 53.1	0.913	3.78	442.1	122.8
0.931	3.94	<i>455.1</i>	0.919	3.88	444.1	123.4
0.940	4.04	<i>4</i> 56.8	0.928	3.98	445.8	123.8
0.948	4.13	457.7	0.936	4.07	446.7	124.1
0.955	4.24	458.6	0.943	4.17	447.6	124.3
0.962	4.34	459.0	0.950	4.28	448.0	124.4
	Vertical disp. (mm) 0.855 0.863 0.871 0.884 0.901 0.919 0.925 0.931 0.940 0.948 0.955	disp. (mm) (mm) 0.855 3.23 0.863 3.35 0.871 3.45 0.884 3.54 0.901 3.63 0.919 3.74 0.925 3.84 0.931 3.94 0.940 4.04 0.948 4.13 0.955 4.24	Vertical disp. Horizontal disp. Horizontal force (mm) (mm) (N) 0.855 3.23 424.9 0.863 3.35 428.8 0.871 3.45 431.5 0.884 3.54 441.8 0.901 3.63 448.7 0.919 3.74 451.1 0.925 3.84 453.1 0.931 3.94 455.1 0.940 4.04 456.8 0.948 4.13 457.7 0.955 4.24 458.6	Vertical disp. Horizontal disp. Horizontal force Vertical deformation (mm) (mm) (N) (mm) 0.855 3.23 424.9 0.843 0.863 3.35 428.8 0.851 0.871 3.45 431.5 0.859 0.884 3.54 441.8 0.872 0.901 3.63 448.7 0.889 0.919 3.74 451.1 0.907 0.925 3.84 453.1 0.913 0.931 3.94 455.1 0.919 0.940 4.04 456.8 0.928 0.948 4.13 457.7 0.936 0.955 4.24 458.6 0.943	Vertical disp. Horizontal disp. Horizontal force Vertical deformation Horizontal disp. (mm) (mm) (N) (mm) (mm) 0.855 3.23 424.9 0.843 3.17 0.863 3.35 428.8 0.851 3.28 0.871 3.45 431.5 0.859 3.38 0.884 3.54 441.8 0.872 3.48 0.901 3.63 448.7 0.889 3.57 0.919 3.74 451.1 0.907 3.68 0.925 3.84 453.1 0.913 3.78 0.931 3.94 455.1 0.919 3.88 0.940 4.04 456.8 0.928 3.98 0.948 4.13 457.7 0.936 4.07 0.955 4.24 458.6 0.943 4.17	Vertical disp. Horizontal disp. Horizontal force Vertical deformation Horizontal disp. Horizontal force (mm) (mm) (N) (mm) (mm) (N) 0.855 3.23 424.9 0.843 3.17 413.9 0.863 3.35 428.8 0.851 3.28 417.8 0.871 3.45 431.5 0.859 3.38 420.5 0.884 3.54 441.8 0.872 3.48 430.8 0.901 3.63 448.7 0.889 3.57 437.7 0.919 3.74 451.1 0.907 3.68 440.1 0.925 3.84 453.1 0.913 3.78 442.1 0.931 3.94 455.1 0.919 3.88 444.1 0.940 4.04 456.8 0.928 3.98 445.8 0.948 4.13 457.7 0.936 4.07 446.7 0.955 4.24 458.6 0.943 4.17

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	05/05/2015	Date	05/06/2015	Date	N° 5370/2015


Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

Red	corded data		Calculated data
Time	Vertical displacement	Time	Vertical deformation of specimen
(mins)	(mm)	(root mins)	(mm)
0.07	1.319	0.3	0.000
0.12	1.334	0.3	0.015
0.20	1.350	0.4	0.031
0.32	1.353	0.6	0.034
0.50	1.355	0.7	0.036
0.80	1.368	0.9	0.049
1.28	1.388	1.1	0.069
2.03	1.401	1.4	0.082
3.23	1.418	1.8	0.099
5.15	1.439	2.3	0.120
8.20	1.463	2.9	0.144
13.05	1.488	3.6	0.169
20.75	1.512	4.6	0.193
33.00	1.546	5.7	0.227
52.47	1.598	7.2	0.279
83. <i>4</i> 2	1.633	9.1	0.314
132.65	1.650	11.5	0.331
210.92	1.665	14.5	0.346
335.35	1.681	18.3	0.362
533.22	1.686	23.1	0.367
847.82	1.688	29.1	0.369

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani	
Date	06/05/2015	Date	05/06/2015	Date	N° 5370/2015	

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

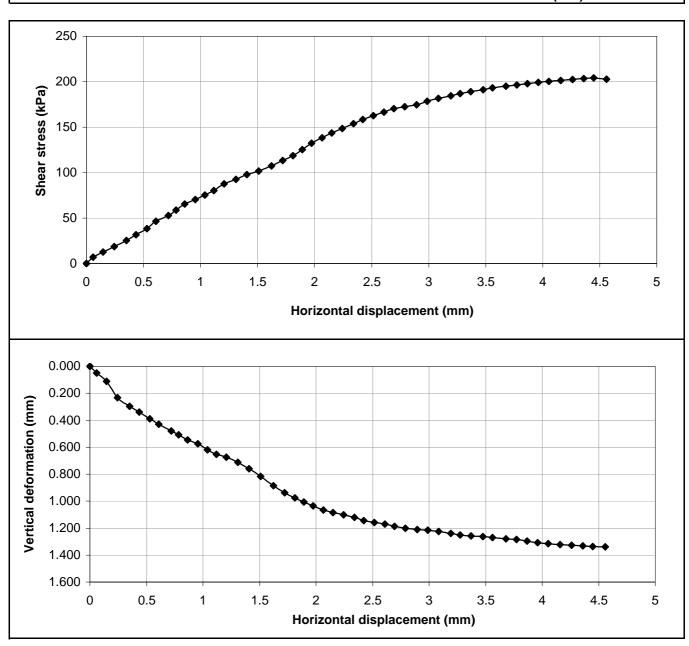
	Record	led data		(Calculated dat	ta	
Elapsed	Vertical	Horizontal	Horizontal	Vertical deformation	Horizontal	Horizontal	Choor otropo
time	disp.	disp.	force	vertical delormation	disp.	force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
9.98	0.026	0.04	<i>7</i> 2.5	0.000	0.00	0.0	0.0
19.97	0.076	0.10	98.3	0.050	0.06	25.8	7.2
29.97	0.137	0.19	118.7	0.111	0.15	46.2	12.8
39.95	0.259	0.28	139.5	0.233	0.24	67.0	18.6
49.93	0.322	0.39	164.2	0.296	0.35	91.7	25.5
59.93	0.365	0.48	187.1	0.339	0.44	114.6	31.8
69.92	0.416	0.57	210.4	0.390	0.53	137.9	38.3
79.92	0.456	0.65	239.4	0.430	0.61	166.9	46.4
89.90	0.505	0.76	262.5	0.479	0.72	190.0	52.8
99.88	0.535	0.83	284.3	0.509	0.79	211.8	58.8
109.88	0.571	0.90	308.1	0.545	0.86	235.6	65.4
119.87	0.601	1.00	326.2	0.575	0.96	253.7	70.5
129.87	0.646	1.08	343.5	0.620	1.04	271.0	<i>75.3</i>
139.85	0.678	1.16	361.3	0.652	1.12	288.8	80.2
149.85	0.700	1.25	388.5	0.674	1.21	316.0	87.8
159.83	0.738	1.35	406.3	0.712	1.31	333.8	92.7
169.82	0.786	1.45	<i>4</i> 25.1	0.760	1.41	352.6	97.9
179.82	0.843	1.55	438.9	0.817	1.51	366.4	101.8
189.80	0.912	1.66	<i>4</i> 58.7	0.886	1.62	386.2	107.3
199.78	0.964	1.76	481.3	0.938	1.72	408.8	113.6
209.78	1.002	1.85	499.1	0.976	1.81	<i>4</i> 26.6	118.5
219.77	1.033	1.93	523.5	1.007	1.89	<i>4</i> 51.0	125.3
229.77	1.061	2.02	<i>54</i> 8.6	1.035	1.98	476.1	132.2
239.75	1.092	2.11	570.1	1.066	2.07	497.6	138.2
249.75	1.112	2.19	590.3	1.086	2.15	517.8	143.8
259.73	1.128	2.28	607.2	1.102	2.24	534.7	148.5
269.72	1.147	2.38	626.1	1.121	2.34	553.6	153.8
279.72	1.170	2.46	642.3	1.144	2.42	569.8	158.3
289.70	1.184	2.56	657.8	1.158	2.52	585.3	162.6
299.70	1.197	2.65	671.5	1.171	2.61	599.0	166.4
309.68	1.214	2.73	685.7	1.188	2.69	613.2	170.3
319.67	1.228	2.83	693.8	1.202	2.79	621.3	172.6
329.67	1.236	2.93	701.3	1.210	2.89	628.8	174.7
339.65	1.242	3.03	715.8	1.216	2.99	643.3	178.7

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical


	Record	led data		(Calculated dat	ta	
Elapsed	Vertical	Horizontal	Horizontal	Vertical deformation	Horizontal	Horizontal	Shear stress
time	disp.	disp.	force	vertical delormation	disp.	force	Silear Siless
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
349.63	1.251	3.13	727.0	1.225	3.09	654.5	181.8
359.63	1.266	3.23	736.6	1.240	3.19	664.1	184.5
369.62	1.276	3.32	<i>745.3</i>	1.250	3.28	672.8	186.9
379.62	1.283	3.41	753.8	1.257	3.37	681.3	189.2
389.60	1.289	3.52	761.0	1.263	<i>3.4</i> 8	688.5	191.3
399.60	1.296	3.60	768.0	1.270	3.56	695.5	193.2
409.58	1.306	3.72	774.7	1.280	3.68	702.2	195.1
419.57	1.310	3.81	780.3	1.284	3.77	707.8	196.6
<i>4</i> 29.57	1.323	3.91	785.2	1.297	3.87	712.7	198.0
439.55	1.334	4.00	789.4	1.308	3.96	716.9	199.1
449.53	1.341	4.10	793.5	1.315	4.06	721.0	200.3
459.53	1.349	4.20	797.5	1.323	4.16	725.0	201.4
469.52	1.353	4.30	801.1	1.327	4.26	728.6	202.4
479.52	1.358	4.40	804.6	1.332	4.36	732.1	203.4
489.50	1.362	4.49	807.5	1.336	4.45	735.0	204.2
499.50	1.366	4.60	803.0	1.340	4.56	730.5	202.9

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 4.00/4.50

Borehole number 1 Sample type Undisturbed cohesive

Sample number 1 Specimen orientation Vertical

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	06/05/2015	Date	05/06/2015	Date	N° 5370/2015

Università degli Studi di Siena

CGT - Centro di GeoTecnologie

Laboratorio di Meccanica delle Terre

PROVA DI CONSOLIDAZIONE EDOMETRICA AD INCREMENTO DI CARICO Eseguita secondo la Norma ASTM D 2435

IMPOSTAZIONE DATI

Cantiere	Cecina Nord		
Progetto	Tecna S.n.c.	Numero Campione 1	
Numero Sondaggio	1	Profondità prelievo (m) 4.00	

Descrizione provino	Limo con argilla con sabi	bia.	
Metodo preparazione	Trimming mediante torn	ietto	
Peso spec. dei grani	2.73	Stimato / misurato	Determinato in conformità con ASTM D 5550

Rapporto leva (**:1) 10.0

Sequen	Sequenza dei passi di carico			
Numero	Pressione	Massa		
passo	applicata			
	(kPa)	(kg)		
Precarico	N/A	-		
1	50	1.00		
2	100	2.00		
3	200	4.00		
4	400	8.01		
5	800	16.01		
6	1600	32.02		
7	800	16.01		
8	400	8.01		
9	200	4.00		
10	100	2.00		
11	50	1.00		
12	25	0.50		
13	13	0.25		
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

		Metodo di prova		
Carta da filtro ?	\checkmark	○ Method A ● Method B		

Misure iniziali		
Diametro interno anello (mm)	50.00	
Peso anello (g)	60.35	
Peso provino + anello (g)	139.09	
Altezza provino (mm)	20.00	
Sezione provino (mm²)	1963.5	
Volume provino (cm³)	39.3	
Peso provino (g)	78.74	
Volume parte solida (cm³)	24.6	
Altezza equivalente parte solida (mm)	12.54	

Contenuto d'acqua da trimming			
Peso terreno umido + tara (g)	52.25		
Peso terreno secco + tara (g)	47.06		
Peso tara (g)	18.01		
Contenuto d'acqua (%)	17.9		

Letture iniziali		
Lettura iniziale trasduttore (mm)	0.000	
Carico di rigonfiamento (kPa)	25	
Lettura finale trasduttore (mm)	-0.006	

Misure finali Provino intero	O Provino parziale	
Peso provino umido + anello + tara (g)	169.23	
Peso provino secco + anello + tara (g)	156.15	
Peso tara (g)	28.58	
Peso provino secco (g)	67.22	
Contenuto d'acqua (%)	19.5	

PROVA DI CONSOLIDAZIONE EDOMETRICA AD INCREMENTO DI CARICO Eseguita secondo la Norma ASTM D 2435 (Metodo B)

RAPPORTO DI PROVA

Cantiere	Cecina Nord	
Progetto	Tecna S.n.c.	Numero Campione 1
Numero Sondaggio	1	Profondità prelievo (m) 4
Descrizione provino	Limo con argilla con sabbia.	
Metodo preparazione	Trimming mediante tornietto	
Peso spec. dei grani	2.73 (Determinato in conformità con ASTM D)
Condizioni di prova	Contenuto d'acqua	

Pressione di sovraconsolidazione (kPa)

Carico di rigonfiamento (kPa)

Variazione altezza provino prima del primo gradino (mm)

-0.006

CONDIZIONI INIZIALI Altezza (mm) 20.00 Diametro (mm) 50.00 Contenuto d'acqua ottenuto da trimming (%) 17.9 Contenuto d'acqua misura diretta (%) 17.1 Densità secca (Mg/m³) 1.71 Peso secco unitario (kN/m³) 16.8 Indice dei vuoti 0.595 Grado di saturazione (%) 79

CONDIZIONI FINALI	
Contenuto d'acqua (%)	19.5
Densità secca (Mg/m³)	1.78
Peso secco unitario (kN/m³)	17.5
Indice dei vuoti	0.533
Grado di saturazione (%)	100

Commenti / variazioni delle procedure::	

PROVA DI CONSOLIDAZIONE EDOMETRICA AD INCREMENTO DI CARICO Eseguita secondo la Norma ASTM D 2435 (Metodo B)

RAPPORTO DI PROVA

Cantiere Cecina Nord

Progetto Tecna S.n.c. Numero Campione 1
Numero Sondaggio 1 Profondità prelievo (m) 4

letodo di misura			Logaritmo del tempo	
Fase di carico	Durata gradino di carico	Altezza a fine gradino	Altezza a fine consolidazione primaria	Coefficiente di consolidazione
(kPa)	(hh:mm)	(mm)	(mm)	c _v (mm²/sec)
N/A - 50	24:06	19.97	-	-
50 - 100	24:08	19.91	19.91	1.60E-01
100 - 200	88:18	19.75	19.76	1.79E-01
200 - 400	24:35	19.51	19.52	1.86E-01
400 - 800	24:15	19.13	19.23	1.38E-01
800 - 1600	24:01	18.61	18.65	3.67E-02
1600 - 800	24:03	18.64	-	-
800 - 400	71:01	18.70	-	-
400 - 200	24:17	18.77	-	-
200 - 100	24:09	18.89	-	-
100 - 50	24:13	19.02	-	-
<i>50 - 25</i>	07:18	19.10	-	-
25 - 12.5	16:22	19.22	-	-

Rapporto di Prova

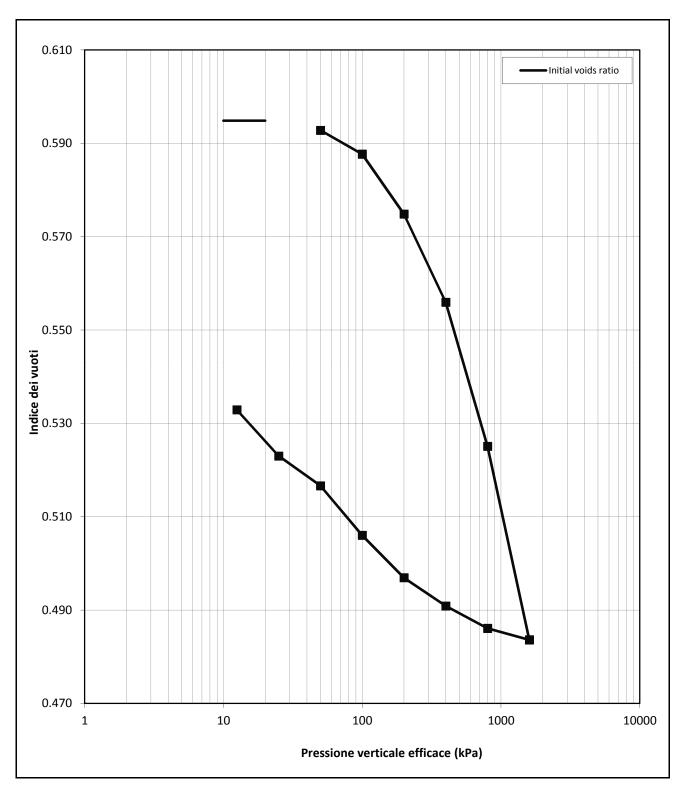
Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	1
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5359/2015	Data fine prova	15/05/2015

Gradino	Fase di carico	ε	е	М	C _v	K
	kPa	%		MN/m ²	mm²/sec	m/sec
1	12.5	0.00	0.595	RIG.	RIG.	RIG.
2	25	0.00	0.595	RIG.	RIG.	RIG.
3	50	0.13	0.593	-	1	1
4	100	0.45	0.588	15.63	1.60E-01	1.00E-10
5	200	1.26	0.575	12.42	1.79E-01	1.41E-10
6	400	2.44	0.556	16.88	1.86E-01	1.08E-10
7	800	4.38	0.525	20.67	1.38E-01	6.55E-11
8	1600	6.98	0.484	30.77	3.67E-02	1.17E-11
9	800	6.82	0.491			
10	400	6.52	0.491			
11	200	6.14	0.497			
12	100	5.57	0.506			
13	50	4.91	0.517			
14	25	4.51	0.523			

RIG. = Rigofiamento

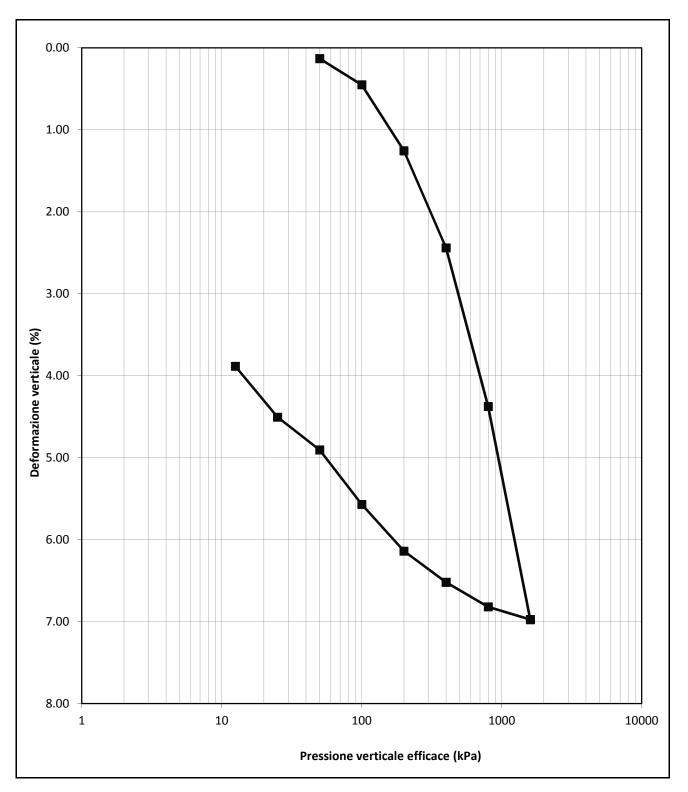
Commenti:

Il presente certificato è costituito da 14 pagine

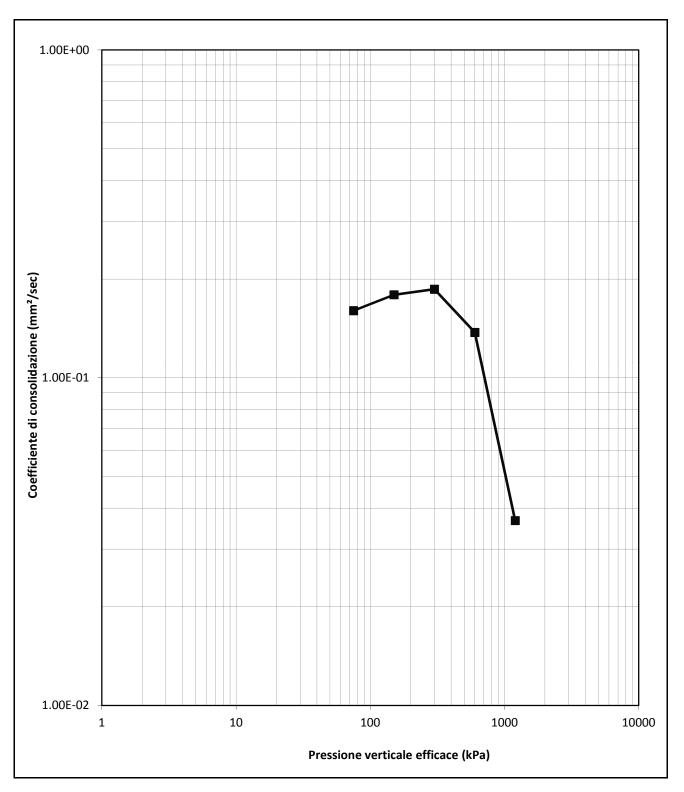

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani	
Data	03/06/2015	Data	03/06/2015	

RAPPORTO DI PROVA

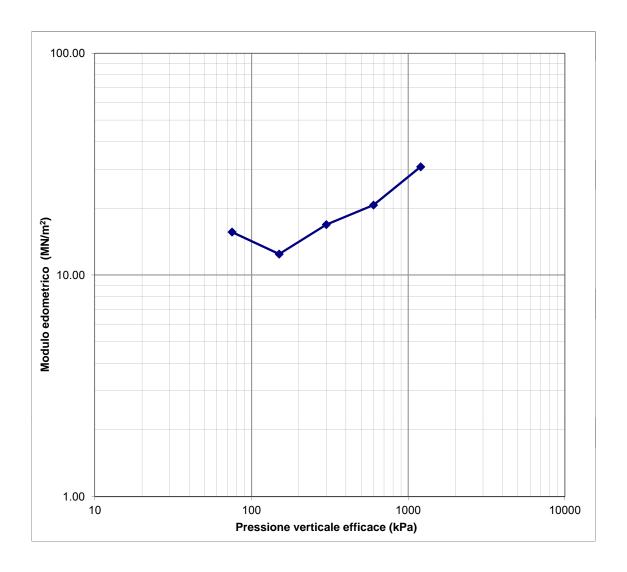
Cantiere Cecina Nord


Progetto Tecna S.n.c. Numero Campione 1

Numero Sondaggio 1 Profondità prelievo (n 4

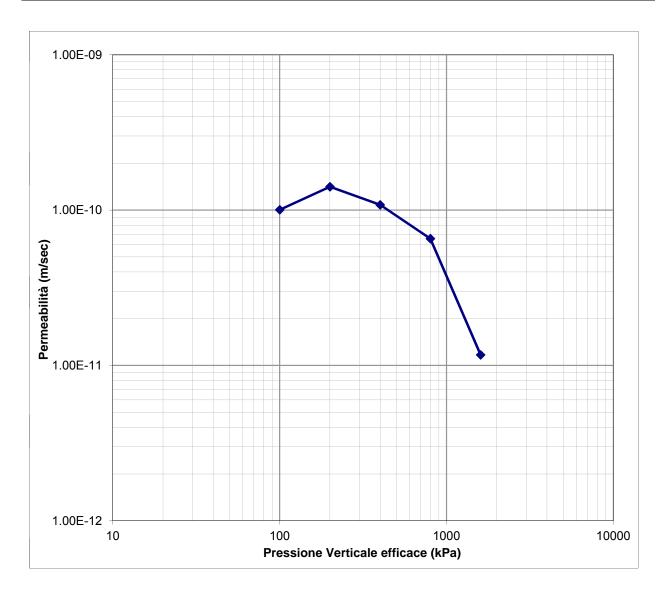

RAPPORTO DI PROVA

Cantiere	Cecina Nord	
Progetto	Tecna S.n.c.	Numero Campione 1
Numero Sondaggio	1	Profondità prelievo (n 4



RAPPORTO DI PROVA

Cantiere Cecina Nord
Progetto Tecna S.n.c. Numero Campione 1
Numero Sondaggio 1 Profondità prelievo (n 4



Cantiere	Cecina Nord			
Cliente	Tecna S.n.c.	Numero Campione	1	
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50	
Verbale Accettazione	323	Data inizio prova	28/04/2015	
Numero di Certificato	5359/2015	Data fine prova	15/05/2015	

Controlla	ato Dott.ssa Sfalanga	Approvato Prof. Carmignani
Data	03/06/2015	Data 03/06/2015

Cantiere	Cecina Nord			
Cliente	Tecna S.n.c.	Numero Campione	1	
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50	
Verbale Accettazione	323	Data inizio prova	28/04/2015	
Numero di Certificato	5359/2015	Data fine prova	15/05/2015	

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	03/06/2015	Data	03/06/2015

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	1
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5359/2015	Data fine prova	15/05/2015

Gradino 1	12.5 kPa
dt	dH
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

Gradino 2	25 kPa
dt	dH
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

Gradino 3	50 kPa
dt	dH
min	mm
0.050	0.000
0.087	0.001
0.139	0.001
0.202	0.002
0.323	0.003
0.509	0.004
0.809	0.005
1.286	0.005
2.044	0.007
3.251	0.010
5.166	0.011
8.214	0.013
13.058	0.014
20.759	0.016
33.005	0.018
52.474	0.020
83.434	0.023
132.656	0.024
210.923	0.026
335.364	0.027
533.230	0.027
847.832	0.027
1348.053	0.031
1446.406	0.032

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	03/06/2015	Data	03/06/2015

Rapporto di Prova

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	1
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5359/2015	Data fine prova	15/05/2015

Gradino 4	100 kPa
dt	dH
min	mm
0.054	0.069
0.083	0.071
0.133	0.072
0.202	0.075
0.32	0.078
0.511	0.081
0.812	0.086
1.289	0.091
2.043	0.097
3.25	0.102
5.165	0.107
8.21	0.112
13.054	0.117
20.757	0.121
33.004	0.125
52.472	0.128
83.432	0.129
132.659	0.13
210.925	0.131
335.364	0.132
533.229	0.132
847.835	0.133
1348.056	0.133
1447.887	0.133

Gradino 5	200 kPa
dt	dH
min	mm
0.05	0.229
0.083	0.237
0.13	0.239
0.203	0.245
0.326	0.252
0.511	0.261
0.812	0.273
1.285	0.286
2.043	0.301
3.25	0.319
5.165	0.331
8.214	0.34
13.055	0.349
20.757	0.355
33.003	0.361
52.476	0.365
83.434	0.371
132.658	0.375
210.921	0.379
335.364	0.382
533.231	0.384
847.832	0.385
1348.055	0.387
2143.404	0.388

Gradino 6	400 kPa
dt	dH
min	mm
0.05	0.53
0.083	0.545
0.129	0.549
0.201	0.557
0.321	0.565
0.51	0.579
0.809	0.603
1.359	0.626
2.045	0.643
3.25	0.668
5.164	0.683
8.211	0.701
13.057	0.721
20.758	0.729
33.004	0.735
52.472	0.744
83.434	0.751
132.656	0.755
210.923	0.758
335.367	0.761
533.231	0.765
847.834	0.766
1348.055	0.767
1475.361	0.767

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	03/06/2015	Data	03/06/2015

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	1
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5359/2015	Data fine prova	15/05/2015

Gradino 7	800 kPa
dt	dH
min	mm
0.051	1.055
0.083	1.083
0.129	1.086
0.205	1.091
0.323	1.094
0.508	1.099
1.059	1.125
1.289	1.139
2.265	1.182
3.268	1.215
5.166	1.254
8.214	1.281
13.056	1.305
20.759	1.331
33.001	1.354
52.474	1.363
83.431	1.374
132.656	1.388
210.923	1.397
335.366	1.41
533.228	1.42
847.833	1.428
1348.056	1.441
1454.932	1.442

Gradino 8	1600 kPa
dt	dH
min	mm
0.054	1.71
0.082	1.745
0.127	1.765
0.202	1.789
0.32	1.809
0.51	1.825
1.011	1.845
1.286	1.858
2.101	1.879
3.252	1.902
5.167	1.937
8.211	1.969
13.058	2.007
20.759	2.039
33.005	2.076
52.475	2.106
83.434	2.131
132.655	2.154
210.924	2.169
335.368	2.186
533.232	2.21
847.832	2.22
1348.053	2.23
1440.87	2.23

Gradino 9	800 kPa
dt	dH
min	mm
0.05	2.194
0.083	2.189
0.132	2.187
0.233	2.184
0.321	2.181
0.511	2.179
0.94	2.178
1.288	2.176
2.045	2.174
3.25	2.172
5.165	2.171
8.214	2.169
13.058	2.168
20.76	2.168
33.002	2.167
52.473	2.166
83.432	2.166
132.656	2.166
210.921	2.165
335.363	2.166
533.228	2.167
847.832	2.167
1348.053	2.164
1442.759	2.163

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	03/06/2015	Data	03/06/2015

Rapporto di Prova

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	1
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5359/2015	Data fine prova	15/05/2015

Gradino 10	400 kPa
dt	dH
min	mm
0.051	2.13
0.084	2.128
0.13	2.126
0.202	2.125
0.322	2.123
0.509	2.121
0.81	2.119
1.287	2.115
2.044	2.111
3.25	2.11
5.168	2.105
8.213	2.1
17.817	2.096
20.758	2.093
33.002	2.091
52.476	2.088
83.432	2.085
132.657	2.083
210.92	2.082
335.364	2.081
533.229	2.081
847.833	2.08
1348.052	2.075
2143.405	2.076

Gradino 11	200 kPa
dt	dΗ
min	mm
0.051	2.044
0.084	2.044
0.129	2.043
0.205	2.042
0.321	2.04
0.512	2.035
0.808	2.033
1.287	2.031
2.044	2.027
3.251	2.024
5.382	2.02
8.214	2.016
13.058	2.012
20.759	2.01
33.006	2.006
52.475	2
83.431	1.992
132.657	1.988
210.924	1.984
335.367	1.979
533.231	1.978
847.832	1.974
1348.056	1.969
1457.228	1.968

Gradino 12	100 kPa
dt	dH
min	mm
0.05	1.948
0.083	1.945
0.129	1.945
0.201	1.943
0.322	1.941
0.511	1.939
0.813	1.935
1.287	1.932
2.046	1.928
3.248	1.922
5.164	1.92
8.214	1.913
13.054	1.907
20.757	1.902
33.004	1.895
52.474	1.887
83.433	1.879
132.655	1.862
210.923	1.849
335.363	1.841
533.232	1.839
847.832	1.838
1348.054	1.834
1448.96	1.834

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	03/06/2015	Data	03/06/2015

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	1
Numero Sondaggio	1	Profondità prelievo (m)	4.00 - 4.50
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5359/2015	Data fine prova	15/05/2015

Gradino 13	50 kPa
dt	dH
min	mm
0.051	1.821
0.083	1.820
0.129	1.819
0.201	1.819
0.323	1.817
0.512	1.816
0.830	1.814
1.288	1.813
2.044	1.811
3.248	1.808
5.166	1.805
8.214	1.802
13.057	1.797
20.756	1.792
33.004	1.784
52.474	1.772
83.435	1.758
132.656	1.746
210.923	1.729
335.367	1.718
533.231	1.711
847.832	1.704
1348.056	1.691
1452.504	1.688

Gradino 14	25 kPa
dt	dH
min	mm
0.050	1.673
0.083	1.673
0.130	1.673
0.205	1.672
0.324	1.672
0.509	1.671
0.812	1.670
1.287	1.669
2.045	1.668
3.251	1.667
5.250	1.665
8.246	1.662
13.056	1.658
20.760	1.655
33.003	1.652
52.472	1.644
83.433	1.639
132.655	1.628
210.922	1.618
335.366	1.602
437.856	1.593

Gradino 15	12.5 kPa
dt	dH
min	mm
0.050	1.580
0.083	1.580
0.129	1.579
0.203	1.579
0.322	1.578
0.511	1.577
0.810	1.577
1.538	1.576
2.047	1.575
3.251	1.574
5.259	1.574
8.212	1.571
13.055	1.567
20.756	1.562
33.001	1.556
52.472	1.549
83.432	1.539
132.658	1.520
210.924	1.506
335.365	1.494
533.231	1.485
847.832	1.464
981.701	1.456
_	_

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	03/06/2015	Data	03/06/2015

DESCRIZIONE E RIPRESA FOTOGRAFICA DELLA CAROTA ESTRUSA

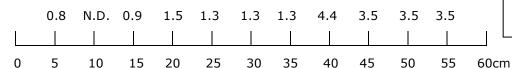
Committente: Tecna S.n.c.

Cantiere/Località: Cecina nord (LI)

Sondaggio: 1 Campione: 4

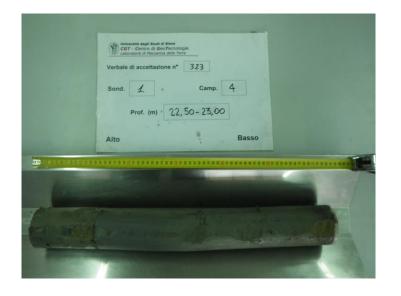
Profondità prelievo: 22.50-23.00

Data prelievo: 08/04/2015 **Data apertura:** 28/04/2015


Verbale accettazione nº 323

Descrizione: Limo sabbioso argilloso. (Raccomandazioni AGI 1977).

Colore: HUE GLEY1 VALUE 4 CHROMA 10Y - Dark Greenish Gray (Munsell Soil Color Chart)


Colore: HUE 2.5Y VALUE 5 CHROMA 4 – Light Olive Brown (Munsell Soil Color Chart)

Pocket (kg/cm²):

Lunghezza carota: 63 cm Diametro carota: 88,9 mm

PARAMETRI ALL'APERTURA	Valore
W - Contenuto naturale d'acqua (%)	21.0
ρ_w - Densità umida (g/cm³)	2.01
ρ_D - Densità secca (g/cm ³)	1.66
ρ _{sat} - Densità satura (g/cm³)	2.05
$oldsymbol{arTheta_{ au}}$ - Porosità Totale (adim.)	0.39
e - Indice dei vuoti (adim.)	0.64
S_r - Grado di saturazione (%)	89.9

Modalità di prelievo: sondaggio a rotazione

Tipo di fustella: Shelby

Classe di qualità del campione: Q4 (Raccomandazioni AGI 1977)

C2 (Eurocodice 7)

Prove esequite:

Cont. Acqua W	X	Granulom. Gr	X	T. Residuo TR	ı
Peso Volume y	X	Compress. ELL	X	Triass. TX UU	-
Peso Specifico Gs	X	Edometria Ed	X	Triass. TX CU	-
Limiti Cons. LL	X	T. Diretto TD	X	Triass. TX CD	-

Committente	Tecna S.n.c.	pagina 1 di 2
Cantiere	Cecina Nord	

PESO SPECIFICO DEI GRANI

Norma di riferimento	ASTM D5550-00

Data prova	11/05/2015
Data certificato	05/06/2015
Verb. Accettazione	323
N. certificato	5368/2015

AccuPyc II 1340 V1.00

Unit 1

Serial #: 488

Page 1

Sample: S1_4 22,50-23,00 Operator: ELONA XHIXHA

Submitter: Bar Code:

File: C:\...\VA323\S1_4.SMP

Analysis Gas: Helium Reported: 11/05/2015 11.15.58

Sample Mass: 9.7390 g Temperature: 25.11 °C Number of Purges: 5

Analysis Start: 11/05/2015 10.59.20 Analysis End: 11/05/2015 11.15.58 Equilib. Rate: 0.005 psig/min Expansion Volume: 9.2248 cm3

Cell Volume: 11.8010 cm³

Comments: VA 323, TECNA S.N.C., CECINA NORD, SONDAGGIO 1 CAMPIONE 4, 22,50 - 23,00

PROF. (m)

Combined Report

			Tabular 1			
Cycle#	Volume (cm³)	Volume Deviation (cm³)	Density (g/cm³)	Density Deviation (g/cm³)	Total Pore Volume (cm³)	Total Pore Volume Deviation (cm³)
1	3.5851	-0.0017	2.7165	0.0013	0.1296	0.0002
2	3.5856	-0.0013	2.7162	0.0010	0.1295	0.0001
3	3.5874	0.0005	2.7148	-0.0004	0.1294	-0.0001
4	3.5881	0.0012	2.7143	-0.0009	0.1293	-0.0001
5	3 5882	0.0013	27142	-0.0010	0.1293	-0.0001

Summary Data	Average	Standard Deviation	
Volume:	3.5869 cm ³	0.0013 cm ³	
Density:	2.7152 g/cm ³	0.0010 g/cm ³	
Total Pore Volume:	0.1294 cm ³	0.0001 cm ³	

Note:		

Il direttore del Laboratorio

Committente	Tecna S.n.c.	pagina 2 di 2
Cantiere	Cecina Nord	

PESO SPECIFICO DEI GRANI

Norma di riferimento ASTM D5550-00

Data prova	11/05/2015
Data certificato	05/06/2015
Verb. Accettazione	323
N. certificato	5368/2015

AccuPyc II 1340 V1.00

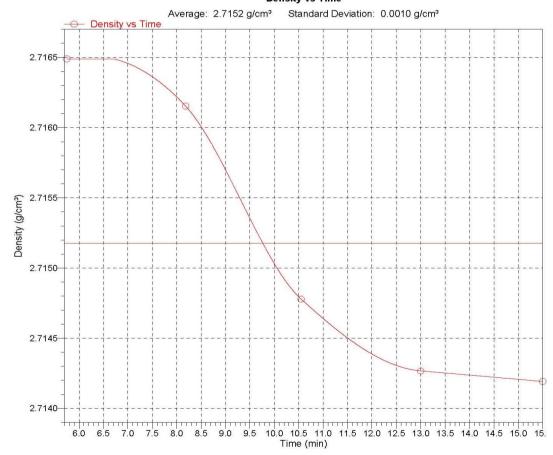
Serial #: 488

Page 2

Sample: S1_4 22,50-23,00 Operator: ELONA XHIXHA Submitter:

File: C:\...\VA323\S1_4.SMP

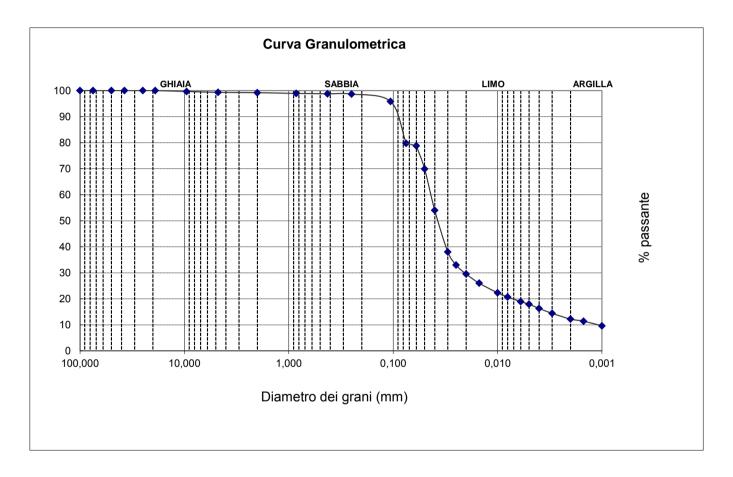
Analysis Gas: Helium Reported: 11/05/2015 11.15.58 Sample Mass: 9.7390 g Temperature: 25.11 °C Number of Purges: 5


Analysis Start: 11/05/2015 10.59.20 Analysis End: 11/05/2015 11.15.58 Equilib. Rate: 0.005 psig/min Expansion Volume: 9.2248 cm³ Cell Volume: 11.8010 cm³

Comments: VA 323, TECNA S.N.C., CECINA NORD, 22,50 - 23,00

SONDAGGIO 1 CAMPIONE 4,

PROF. (m)


Density vs Time

Il direttore del Laboratorio

Committente	TECNA S.n.c.			
Cantiere	Cecina Nord (LI)			
Data prova	08/05/2015			Pag. 1 di 4
Data certificato	04/06/2015			3
Verb.Accettazione	323			
N. Certificato	5366/2015			
Sondaggio	1	Campione 4	Profondità	22,50 - 23,00

ANALISI GRANULOMETRICA (ASTM D422 - C958 -E1617)

Riepilogo dei risultati

Ciottoli	(> 60 mm)	0,0
Ghiaia	(60 - 2 mm)	0,8
Sabbia	(2 - 0,060 mm)	20,4
Limo	(0,060 - 0,002 mm)	66,6
Argilla	(< 0,002 mm)	12,2

D10	0,0150
D30	0,0636
D60	0,0438
UC	2,9

Classificazione AGI 1994

Il direttore del Laboratorio

48

Committente	TECNA S.n.c.					
Cantiere	Cecina Nord (LI)					
Data prova	08/05/2015					Pag. 2 di 4
Data certificato	04/06/2015					_
Verb.Accettazione	323					
N. Certificato	5366/2015					
Sondaggio	1	Campione	4	Profo	ndità	22,50 - 23,00

ANALISI GRANULOMETRICA (ASTM D422 - C958 -E1617)

Setacciatura grossa:

Massa materiale (g): 2025,77

Setacciatura fine:

Massa materiale (g): 171,4

Vagli	Apertura	Massa	Trattenuto	Passante
	vagli	Trattenuta		
ASTM	(mm)	(g)	%	%
3"	75,000	0,00	0,0	100,0
2"	50,000	0,00	0,0	100,0
1,5"	37,500	0,00	0,0	100,0
1"	25,000	0,00	0,0	100,0
3/4"	19,000	0,00	0,0	100,0
3/8"	9,500	6,73	0,3	99,7
No.4	4,750	0,60	0,7	99,3
No.10	2,000	0,20	0,8	99,2
No.20	0,850	0,49	1,1	98,9
No.40	0,425	0,25	1,2	98,8
No.60	0,250	0,19	1,3	98,7
No.140	0,106	4,89	4,2	95,8
No.200	0,075	27,65	20,3	79,7

Sedigrafia:

Material Mass (g): 5,017

Material/Liquid: soil / 0.20% Sodium Metaphosphate (w/w)
Measurement Principle: X-Ray monitored gravity sedimentation
Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

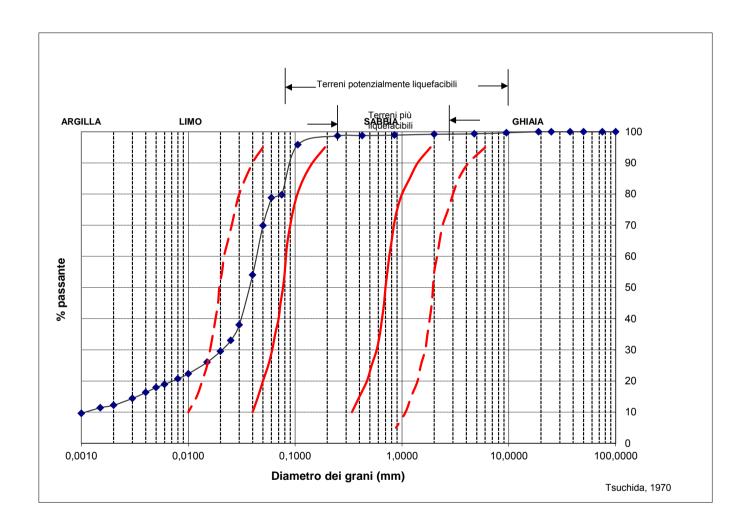
Analyzed: 12/05/2015 10.57.13
Reported: 12/05/2015 15.51.14
Liquid Visc: 0.7226 mPa·s

Analysis Temp: 35.0 °C Full Scale Mass: 79.7 %

Analysis Type: High Speed(Adj)
Run Time: 0:04 hrs:min
Sample Density: 2.715 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 129 / 86 kCnts/s

Reynolds Number: 0.91

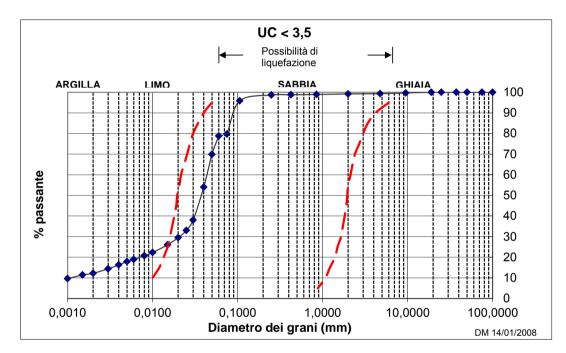
Diametro	Trattenuto	Passante
(mm)	%	%
0,060	21,2	78,8
0,050	30,1	69,9
0,040	46,0	54,0
0,030	62,0	38,0
0,025	67,0	33,0
0,020	70,5	29,5
0,015	74,0	26,0
0,010	77,7	22,3
0,008	79,3	20,7
0,006	81,1	18,9
0,005	82,1	17,9
0,004	83,7	16,3
0,003	85,6	14,4
0,002	87,8	12,2
0,002	88,6	11,4
0,001	90,4	9,6

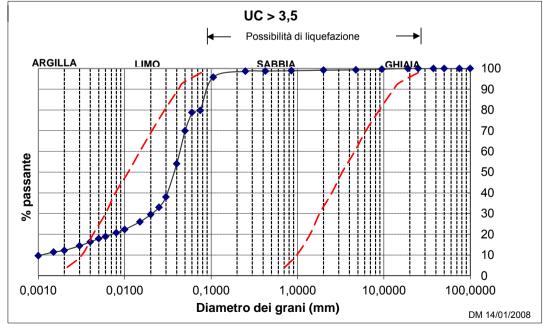

Il direttore del Laboratorio

No sperimentatore

Multiplication of the sperimentatore of

Committente	TECNA S.n.c.				
Cantiere	Cecina Nord (LI)				
Data prova	08/05/2015				Pag. 3 di 4
Data certificato	04/06/2015				3
Verb.Accettazione	323				
N. Certificato	5366/2015				
Sondaggio	4	Campione	4	Profondità	22.50 - 23.00


POTENZIALE DI LIQUEFACIBILITA'



Il direttore del Laboratorio

Committente	TECNA S.n.c.					
Cantiere	Cecina Nord (LI)			- -		
Data prova	08/05/2015					Pag. 4 di 4
Data certificato	04/06/2015					3
Verb.Accettazione	323					
N. Certificato	5366/2015					
Sondaggio	1	Campione	4	Profondità	22,50 - 23,00	_

SUSCETTIBILITA' ALLA LIQUEFAZIONE (NTC 2008)

Il direttore del Laboratorio

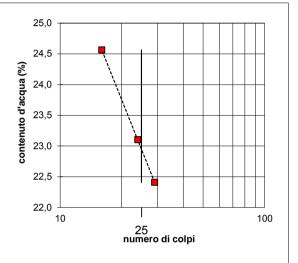
Lo sperimentatore

Committente	Tecna S.n.c.
Cantiere	Cecina Nord (LI)

Pag. 1 di 1

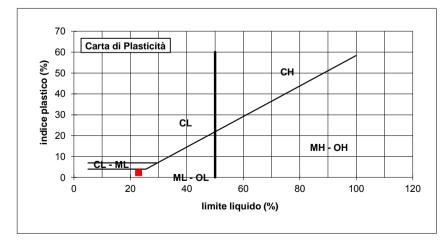
Data prova	21/05/15	
Data certificato	04/06/15	
Verb.Accetazione	323	
N. Certificato	5364/2015	

LIMITI DI CONSISTENZA


Norma di riferimento A	ASTM D4318
------------------------	------------

Sondaggio	1	Campione	4	Profondità	22,50 - 23,00

Limite Liquido				22,9
Numero tara		B13	B26	A13
Numero dei colpi		29	24	16
P. umido + tara	g	64,52	77,36	71,87
P. secco + tara	g	55,94	66,13	61,19
Peso tara	g	17,65	17,52	17,71
Peso umido	g	46,87	59,84	54,16
Peso secco	g	38,29	48,61	43,48
Contenuto d'acqua	%	22,41	23,10	24,56


Limite Plastico			20,6
Numero tara		B15	B32
P. umido + tara	g	52,90	48,99
P. secco + tara	g	46,91	43,65
Peso tara	g	17,60	17,98
Peso umido	g	35,30	31,01
Peso secco	g	29,31	25,67
Contenuto d'acqua	%	20,44	20,80

Umidità Naturale		
Numero tara		B39
P. umido + tara	g	77,47
P. secco + tara	g	67,11
Peso tara	g	17,68
Peso umido	g	59,79
Peso secco	g	49,43
Contenuto d'acqua	%	21,0

Limite Liquido LL	22,9
Limite Plastico LP	20,6
Indice di Plasticità Ip	2,3
Umidità Naturale Wn	21,0
Indice di Consistenza Ic	0,9

$$Ip = LL - LP$$
 $Ic = \frac{}{Ip}$

Limi inorganici di bassa plasticità

Limi inorganici di alta plasticità

Argille inorganiche di bassa plasticità CH

Argille inorganiche di alta plasticità

OL

Argille organiche di bassa plasticità OH

Argille organiche di alta plasticità

Il direttore del Laboratorio

No sperimentatore

Authority

Author

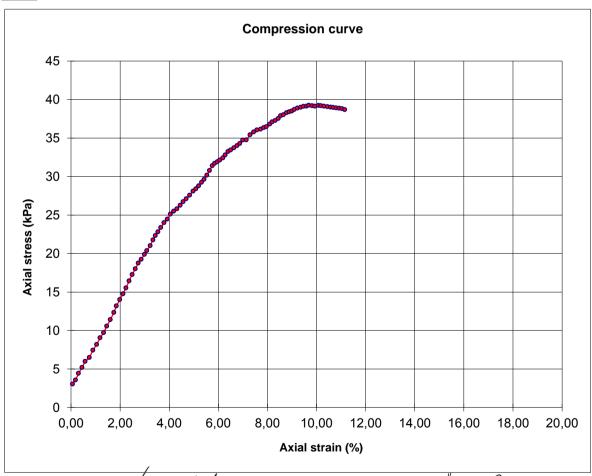
UNCONFINED COMPRESSION TEST

Ref. Standard: ASTM D2166

ommittente Tecna S.n.c.
antiere Cecina Nord

Data prova	04/05/2015
Data certificato	04/06/2015
Verb.Accetazione	323
N. Certificato	5362/2015

Solidaggio i Campione + i Tolondita 22,50 - 25,50	Sondaggio	1	Campione	4	Profondità	22,50 - 23,00
---	-----------	---	----------	---	------------	---------------


Specimen diameter	38,20	mm
Specimen height	76,20	mm
Tare N.	B10	
Weight of tare	28,79	g
Weight of tare + wet specimen	202,80	g
Weight of tare + dry specimen	167,66	g
Test velocity	0,650	mm/min

Natural weight	174,01	g
Dry weight	138,87	g
Moisture content	25,30	%
Natural density	1,993	g/cm ³
Dry density	1,590	g/cm ³
Liquid Limit	23	%
Plastic Limit	21	%
Plasticity Index	2	%

Maximum strength	39,24	kPa	
Corresponding strain	9,69	%	

Pag. 1 di 2

note:

The Technician

The Laboratory Manager

UNCONFINED COMPRESSION TEST

Ref. Standard: ASTM D2166

 Data prova
 04/05/2015

 Data certificato
 04/06/2015

 Verb.Accetazione
 323

 N. Certificato
 5362/2015

CommittenteTecna S.n.c.CantiereCecina Nord

andità 22.50 22.00

Sondaggio 1 Campione 4 Profondità 22,50 - 23,00

Recorded Data

Pag. 2 di 2

load	displ.
N	mm
3,50	0,05
4,10	0,14
5,10	0,23
6,00	0,35
6,90	0,44
7,50	0,57
8,60	0,68
9,50	0,80
10,50	0,90
11,30	1,01
12,30	1,11
13,30	1,22
14,40	1,33
15,40	1,41
16,40	1,52
17,30	1,61
18,20	1,71
19,30	1,80
20,30	1,90
21,20	2,00
22,10	2,09
22,70	2,18
23,50	2,28
24,10	2,35
24,90	2,46
25,80	2,54
26,50	2,62
27,10	2,70
27,80	2,79
28,60	2,89
29,20	2,99
30,00	3,09
30,50	3,19
30,90	3,29
31,50	3,39
32,10	3,48
32,60	3,58
33,20	3,68
33,90	3,79
34,30	3,88
34,80	3,96
35,40	4,05
35,90	4,13
36,60	4,22
37,40	4,30

stress	strain
kPa	%
3,05	0,06
3,57	0,19
4,44	0,30
5,21	0,45
5,99	0,57
6,50	0,75
7,44	0,89
8,20	1,05
9,05	1,19
9,73	1,33
10,58	1,46
11,42	1,60
12,35	1,75
13,19	1,85
14,03	1,99
14,78	2,12
15,52	2,24
16,44	2,37
17,27	2,49
18,01	2,62
18,76	2,74
19,24	2,86
19,89	2,99
20,38	3,09
21,02	3,23
21,76	3,34
22,33	3,44
22,81	3,54
23,37	3,65
24,01	3,79
24,48	3,92
25,12	4,05
25,50	4,18
25,80	4,31
26,26	4,45
26,73	4,57
27,11	4,69
27,57	4,83
28,11	4,97
28,41	5,09
28,79	5,20
29,24	5,32
29,63	5,42
30,17	5,53
30.79	5.64

The Technician

The Laboratory Manager

UNCONFINED COMPRESSION TEST		
Ref. Standard: ASTM D2166	Data prova	04/05/2015
	Data certificato	04/06/2015
Committente Tecna S.n.c.	Verb.Accetazione	323
Cantiere Cecina Nord	N. Certificato	5362/2015

Sondaggio	1	Campione	4	Profondità 22,50 - 23	,00
-----------	---	----------	---	-----------------------	-----

Recorded Data

load	displ.
N	mm
38,20	4,39
38,60	4,46
38,90	4,54
39,20	4,62
39,60	4,71
40,10	4,79
40,70	4,87
41,00	4,95
41,40	5,06
41,80	5,15
42,20	5,24
42,80	5,33
42,90	5,44
43,80	5,56
44,30	5,67
44,70	5,77
44,90	5,89
45,20	5,98
45,40	6,07
45,90	6,17
46,30	6,24
46,60	6,34
47,00	6,43
47,50	6,51
47,70	6,59
48,10	6,69
48,30	6,77
48,50	6,86
48,80	6,93
49,10	7,03
49,30	7,13
49,50	7,22
49,60	7,31
49,80	7,38
49,80	7,48
49,80	7,57
50,00	7,68
50,00	7,75
50,00	7,85
50,00	7,96
50,00	8,06
50,00	8,13
50,00	8,23
50,00	8,32
50,00	8,41
49,90	8,50

stress	strain
kPa	%
31,41	5,76
31,71	5,85
31,92	5,96
32,13	6,06
32,42	6,18
32,79	6,28
33,24	6,39
33,45	6,50
33,73	6,64
34,01	6,76
34,29	6,88
34,73	7,00
34,76	7,14
35,43	7,30
35,78	7,44
36,05	7,57
36,15	7,72
36,34	7,85
36,46	7,96
36,81	8,10
37,09	8,19
37,28	8,32
37,55	8,44
37,91	8,54
38,02	8,65
38,28	8,78
38,40	8,89
38,51	9,00
38,71	9,09
38,89	9,22
	7,22
38,99	9,36
39,10	9,47 9,59
39,13	
39,24	9,69 9,81
39,19	
39,14	9,93
39,23	10,07
39,19	10,18
39,13	10,30
39,07	10,44
39,01	10,57
38,97	10,67
38,92	10,80
38,86	10,92
38,81	11,04
38,68	11,15
30,00	11,13

Pag. 3 di 3

Restituzione fotografica dopo la prova

The Technician

// +. //r

The Laboratory Manager 2

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

Sample description limo sabbioso debolmente argilloso

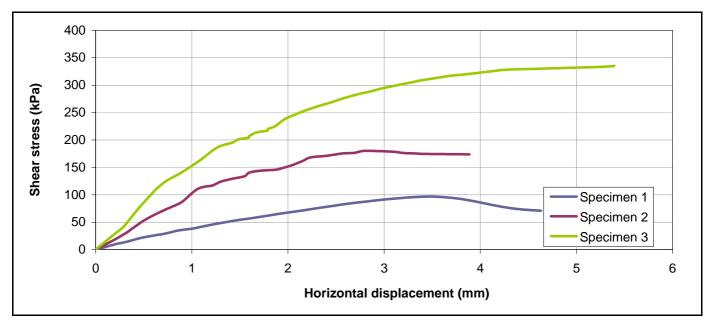
Particle density (Mg/m³) 2.72 (Measured) Specimens tested dry

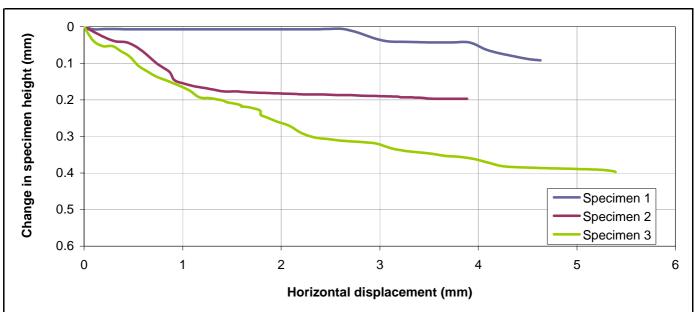
INITIAL CONDITIONS	Specimen 1	Specimen 2	Specimen 3
Specimen depth (m)	22.50/23.00	22.50/23.00	22.50/23.00
Height (mm)	20.0	20.0	20.0
-			
Diameter (mm)	60.0	60.0	60.0
Area (mm²)	2827.4	2827.4	2827.4
Moisture content (measured) (%)	26	24	26
Moisture content (trimmings) (%)	21	22	22
Bulk density (Mg/m³)	1.99	1.98	1.95
Dry density (Mg/m³)	1.58	1.61	1.55
Voids ratio	0.722	0.694	0.754
Degree of saturation (%)	97	93	93

Voids ratio at the end of consolidation	0.697	0.671	0.682
---	-------	-------	-------

SHEARING			
Rate of displacement (mm/min)	0.010000	0.010000	0.010000
Conditions at peak shear stress			
Normal stress (kPa)	149	300	600
Shear stress (kPa)	97	180	335
Horizontal displacement (mm)	3.54	2.79	5.39
Vertical deformation (mm)	0.043	0.188	0.398

Apparent cohesion (kPa)	3.3	
Angle of shearing resistance (°)	29.6	

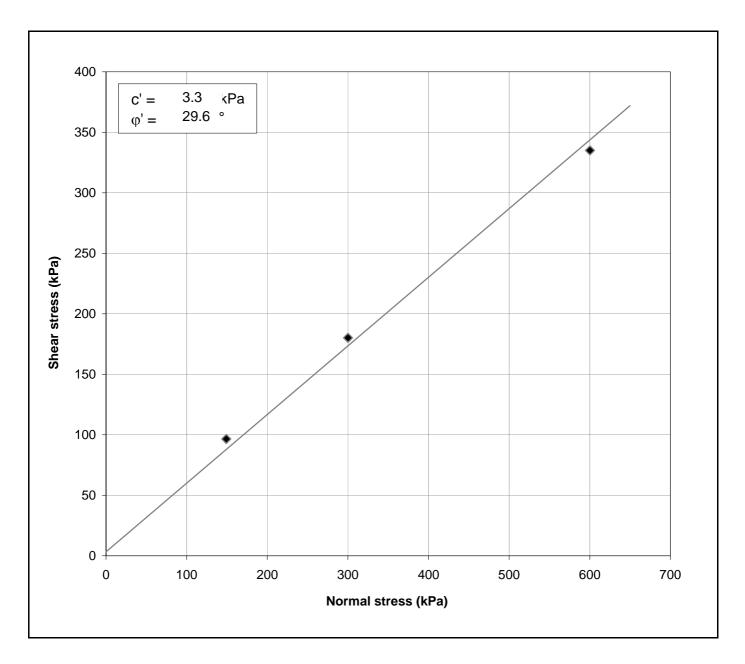

Comments / variations from procedures:


Verbale di accettazione N. 323

Il presente certificato è costiutito da 18 pagine.

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/06/2015	Date	05/06/2015	Date	N° 5369/2015

Project location	Cecina Nord - Ceci	ina (LI)	
Project reference	TECNA snc	Sample depth	22.50/23.00
Borehole number	1	Sample type	Undisturbed cohesive
Sample number	4	Specimen orientation	Vertical


Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/06/2015	Date	05/06/2015	Date	N° 5369/2015

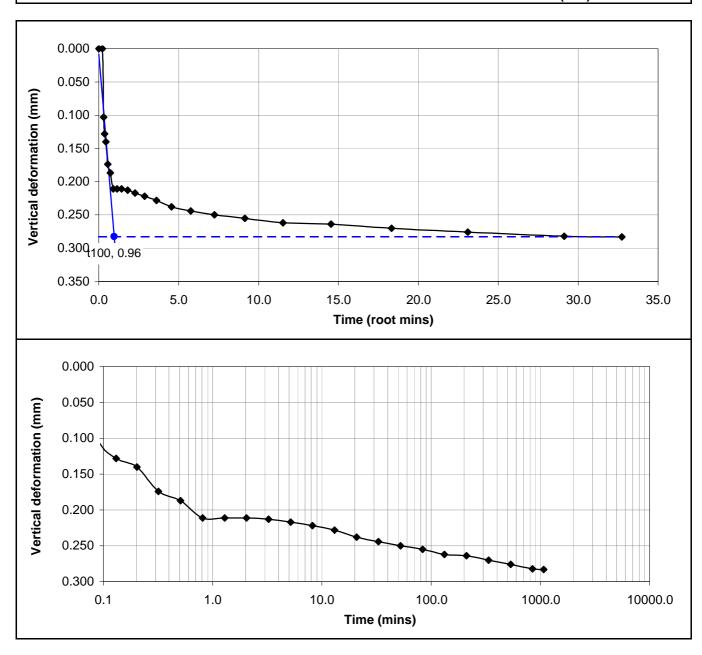
Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/06/2015	Date	05/06/2015	Date	N° 5369/2015


Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

Rec	orded data	Calculated data		
Time	Vertical displacement	Time	Vertical deformation of specimen	
(mins)	(mm)	(root mins)	(mm)	
0.05	0.477	0.2	0.000	
0.09	0.580	0.3	0.103	
0.13	0.605	0.4	0.128	
0.20	0.617	0.5	0.140	
0.32	0.651	0.6	0.174	
0.51	0.664	0.7	0.187	
0.81	0.688	0.9	0.211	
1.29	0.688	1.1	0.211	
2.04	0.688	1.4	0.211	
3.25	0.690	1.8	0.213	
5.17	0.694	2.3	0.217	
8.21	0.699	2.9	0.222	
13.06	0.705	3.6	0.228	
20.76	0.715	4.6	0.238	
33.01	0.721	5.7	0.244	
52.47	0.727	7.2	0.250	
83.43	0.732	9.1	0.255	
132.66	0.739	11.5	0.262	
210.92	0.741	14.5	0.264	
335.37	0.747	18.3	0.270	
533.23	0.753	23.1	0.276	
847.83	0.759	29.1	0.282	
1071.45	0.760	32.7	0.283	

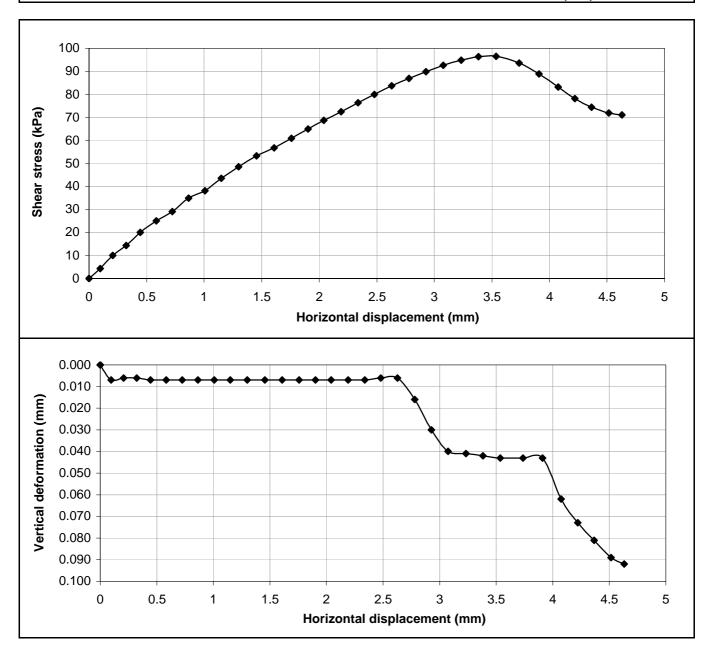
Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/05/2015	Date	05/06/2015	Date	N° 5369/2015

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical


	Record	led data		(Calculated dat	ta	
Elapsed	Vertical	Horizontal	Horizontal	Vertical deformation	Horizontal	Horizontal	Choor otropo
time	disp.	disp.	force	vertical delormation	disp.	force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
0.00	0.000	0.00	29.1	0.000	0.00	0.0	0.0
10.00	0.007	0.10	41.2	0.007	0.10	12.1	4.3
20.00	0.006	0.21	<i>57.4</i>	0.006	0.21	28.3	10.0
30.00	0.006	0.33	69.8	0.006	0.32	40.7	14.4
40.00	0.007	0.45	85.7	0.007	0.45	56.6	20.0
50.00	0.007	0.59	99.8	0.007	0.58	70.7	25.0
60.00	0.007	0.73	111.3	0.007	0.72	82.2	29.1
70.00	0.007	0.87	127.9	0.007	0.86	98.8	34.9
80.00	0.007	1.01	137.0	0.007	1.01	107.9	38.2
90.00	0.007	1.15	152.3	0.007	1.15	123.2	43.6
100.00	0.007	1.30	166.5	0.007	1.30	137.4	48.6
110.00	0.007	1.46	179.6	0.007	1.46	150.5	53.2
120.00	0.007	1.61	189.7	0.007	1.61	160.6	56.8
130.00	0.007	1.76	201.4	0.007	1.76	172.3	60.9
140.00	0.007	1.91	212.8	0.007	1.90	183.7	65.0
150.00	0.007	2.04	223.3	0.007	2.04	194.2	68.7
160.00	0.007	2.19	234.0	0.007	2.19	204.9	72.5
170.00	0.007	2.34	245.1	0.007	2.34	216.0	76.4
180.00	0.006	2.48	255.4	0.006	2.48	226.3	80.0
190.00	0.006	2.63	265.7	0.006	2.63	236.6	83.7
200.00	0.016	2.78	275.0	0.016	2.78	2 <i>4</i> 5.9	87.0
210.00	0.030	2.93	283.0	0.030	2.93	253.9	89.8
220.00	0.040	3.08	290.9	0.040	3.08	261.8	92.6
230.00	0.041	3.24	297.2	0.041	3.23	268.1	94.8
240.00	0.042	3.39	301.8	0.042	3.38	272.7	96. <i>4</i>
250.00	0.043	3.54	302.1	0.043	3.54	273.0	96.6
260.00	0.043	3.74	293.7	0.043	3.74	264.6	93.6
270.00	0.043	3.91	280.5	0.043	3.91	251.4	88.9
280.00	0.062	4.08	264.3	0.062	4.08	235.2	83.2
290.00	0.073	4.23	250.1	0.073	4.22	221.0	78.2
300.00	0.081	4.37	239.4	0.081	4.37	210.3	74.4
310.00	0.089	4.52	232.6	0.089	4.52	203.5	72.0
317.60	0.092	4.63	230.0	0.092	4.63	200.9	71.1

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

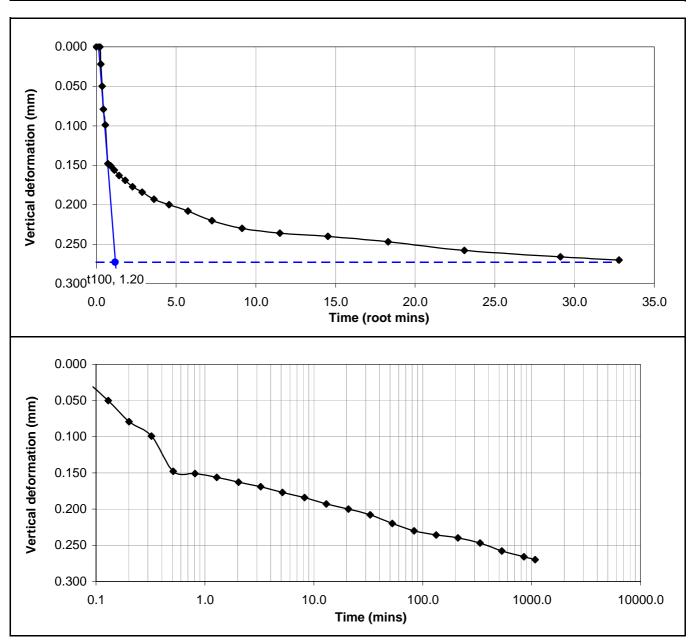
Sample number 4 Specimen orientation Vertical

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	04/05/2015	Date	05/06/2015	Date	N° 5369/2015

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive


Sample number 4 Specimen orientation Vertical

Rec	orded data		Calculated data
Time	Vertical displacement	Time	Vertical deformation of specimen
(mins)	(mm)	(root mins)	(mm)
0.05	1.020	0.2	0.000
0.08	1.042	0.3	0.022
0.13	1.070	0.4	0.050
0.20	1.099	0.4	0.079
0.32	1.119	0.6	0.099
0.51	1.168	0.7	0.148
0.81	1.171	0.9	0.151
1.29	1.176	1.1	0.156
2.04	1.183	1.4	0.163
3.25	1.189	1.8	0.169
5.17	1.197	2.3	0.177
8.21	1.204	2.9	0.184
13.06	1.213	3.6	0.193
20.76	1.220	4.6	0.200
33.00	1.228	5.7	0.208
<i>52.4</i> 8	1.240	7.2	0.220
83. <i>4</i> 3	1.250	9.1	0.230
132.66	1.256	11.5	0.236
210.92	1.260	14.5	0.240
335.37	1.267	18.3	0.247
533.23	1.278	23.1	0.258
847.83	1.286	29.1	0.266
1075.59	1.290	32.8	0.270

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type *Undisturbed cohesive*Sample number 4 Specimen orientation *Vertical*

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	05/05/2015	Date	05/06/2015	Date	N° 5369/2015

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

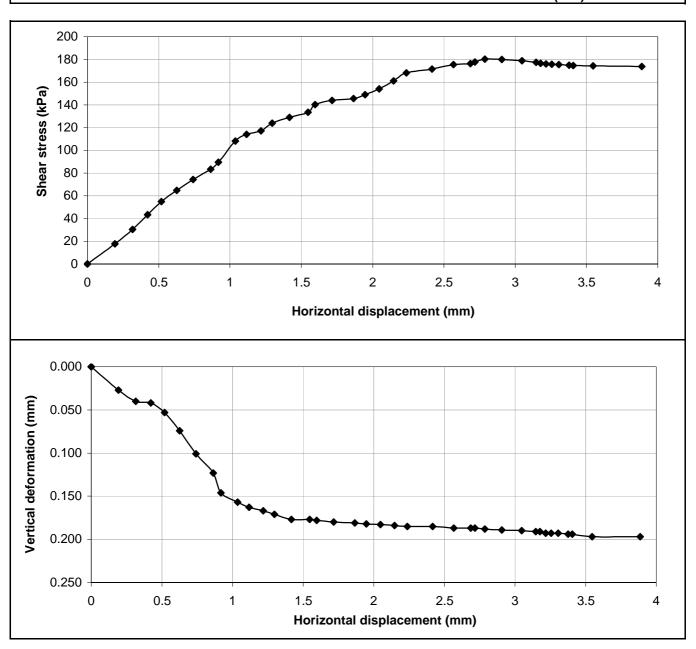
Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

Recorded data			Calculated data				
Elapsed time	Vertical disp.	Horizontal disp.	Horizontal force	Vertical deformation	Horizontal disp.	Horizontal force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
0.01	0.003	0.00	30.5	0.000	0.00	0.0	0.0
10.00	0.030	0.20	80.9	0.027	0.19	50.5	17.9
20.00	0.043	0.32	116.3	0.040	0.32	85.8	30.3
30.00	0.045	0.43	153.3	0.042	0.42	122.9	43.5
40.00	0.056	0.52	185.5	0.053	0.52	155.0	54.8
50.00	0.077	0.63	213.8	0.074	0.63	183.4	64.8
60.00	0.104	0.74	240.4	0.101	0.74	210.0	74.3
70.00	0.126	0.87	266.3	0.123	0.86	235.8	83. <i>4</i>
80.00	0.149	0.92	284.1	0.146	0.92	253.6	89.7
90.00	0.160	1.04	336.3	0.157	1.04	305.8	108.2
100.00	0.166	1.12	353.2	0.163	1.12	322.7	114.1
110.00	0.170	1.22	361.7	0.167	1.22	331.2	117.1
120.00	0.174	1.30	380.6	0.171	1.30	350.1	123.8
130.00	0.180	1.42	395. <i>4</i>	0.177	1.42	364.9	129.1
140.00	0.180	1.55	408.2	0.177	1.55	377.7	133.6
150.00	0.181	1.60	427.2	0.178	1.60	396.7	140.3
160.00	0.183	1.72	437.5	0.180	1.72	407.0	144.0
170.00	0.184	1.87	442.3	0.181	1.87	411.8	145.7
180.00	0.185	1.95	451.7	0.182	1.95	421.2	149.0
190.00	0.186	2.05	466.1	0.183	2.05	<i>4</i> 35.6	154.1
200.00	0.187	2.15	486.3	0.184	2.15	<i>455.</i> 8	161.2
210.00	0.188	2.24	505.7	0.185	2.24	475.2	168.1
220.00	0.188	2.42	515.2	0.185	2.42	484.7	171.4
230.00	0.190	2.57	<i>5</i> 26.4	0.187	2.57	495.9	175.4
240.00	0.190	2.69	529.1	0.187	2.69	498.6	176.4
250.00	0.190	2.72	532.7	0.187	2.72	502.2	177.6
260.00	0.191	2.79	540.0	0.188	2.79	509.5	180.2
270.00	0.192	2.91	539.1	0.189	2.91	508.6	179.9
280.00	0.193	3.05	536. <i>4</i>	0.190	3.05	505.9	178.9
290.00	0.194	3.15	532.6	0.191	3.15	502.1	177.6
300.00	0.194	3.18	530.1	0.191	3.18	499.6	176.7
310.00	0.196	3.22	528.3	0.193	3.22	497.8	176.1
320.01	0.196	3.26	527.4	0.193	3.26	496.9	175.8
330.00	0.196	3.31	526.3	0.193	3.31	495.8	175.4

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00


Borehole number 1 Sample type Undisturbed cohesive

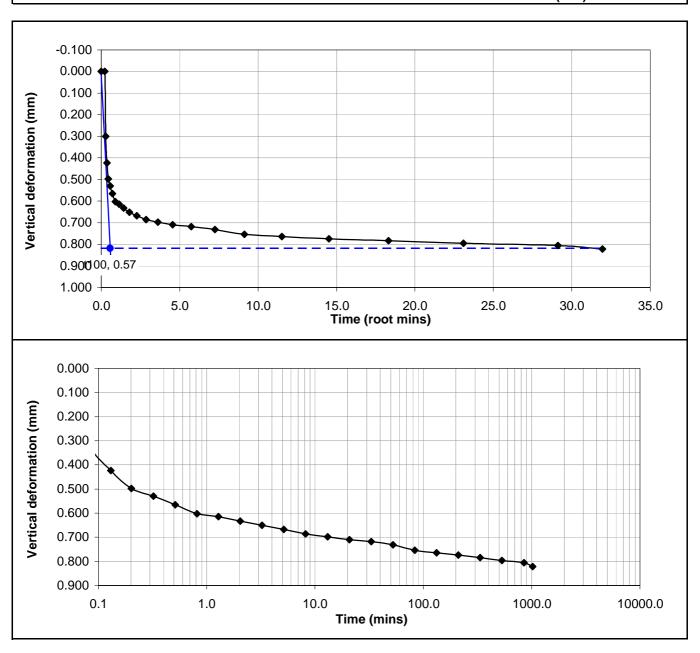
Sample number 4 Specimen orientation Vertical

Recorded data			Calculated data				
Elapsed time	Vertical disp.	Horizontal disp.	Horizontal force	Vertical deformation	Horizontal disp.	Horizontal force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
340.00	0.197	3.38	525.1	0.194	3.38	494.6	174.9
350.00	0.197	3.41	524.0	0.194	3.41	493.5	174.6
360.00	0.200	3.55	523.2	0.197	3.55	492.7	174.3
367.58	0.200	3.89	522.0	0.197	3.89	<i>4</i> 91.5	173.8

Project location Cecina Nord - Cecina (LI)
Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type *Undisturbed cohesive*Sample number 4 Specimen orientation *Vertical*

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	05/05/2015	Date	05/06/2015	Date	N° 5369/2015


Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

Time Vertical deformation of specimen (mm) 0.2
0.2 0.000 0.3 0.301 0.4 0.424 0.6 0.530 0.7 0.566 0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
0.3 0.301 0.4 0.424 0.6 0.530 0.7 0.566 0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
0.4 0.424 0.4 0.498 0.6 0.530 0.7 0.566 0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
0.4 0.498 0.6 0.530 0.7 0.566 0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
0.6 0.530 0.7 0.566 0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
0.7 0.566 0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
0.9 0.602 1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
1.1 0.615 1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
1.4 0.633 1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
1.8 0.651 2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
2.3 0.668 2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
2.9 0.686 3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
3.6 0.698 4.6 0.710 5.7 0.718 7.2 0.731 9.1 0.754
4.60.7105.70.7187.20.7319.10.754
5.7 0.718 7.2 0.731 9.1 0.754
7.2 0.731 9.1 0.754
9.1 0.754
11.5
77.0
14.5
18.3 0.784
23.1 0.796
29.1 0.806
32.0 0.822
18.3 23.1 29.1

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	06/05/2015	Date	05/06/2015	Date	N° 5369/2015

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the small shearbox apparatus)
Set of single stage tests - tested in accordance with BS 1377:1990:Part 7: Clause 4 (procedure 4.5.4)

TEST DATA - SHEARING

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

SPECIMEN 3 Normal stress (kPa) 600

	Record	led data		(Calculated dat	ta	
Elapsed	Vertical	Horizontal	Horizontal	Vertical deformation	Horizontal	Horizontal	Choor otropo
time	disp.	disp.	force	Vertical deformation	disp.	force	Shear stress
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
0.00	0.009	0.01	48.1	0.000	0.00	0.0	0.0
10.00	0.046	0.10	85.3	0.037	0.09	37.3	13.2
20.00	0.062	0.20	125.1	0.053	0.19	77.1	27.3
30.00	0.062	0.30	165.6	0.053	0.29	117.5	41.6
40.00	0.076	0.38	217.6	0.067	0.37	169.6	60.0
50.00	0.090	0.47	268.9	0.081	0.46	220.8	78.1
60.00	0.116	0.56	318.4	0.107	0.55	270.3	95.6
70.00	0.131	0.65	364.9	0.122	0.64	316.8	112.1
80.00	0.146	0.75	403.6	0.137	0.74	355.6	125.8
90.00	0.158	0.86	434.3	0.149	0.85	386.3	136.6
100.00	0.170	0.97	468.3	0.161	0.97	<i>4</i> 20.2	148.6
110.00	0.183	1.08	502.7	0.174	1.07	454.7	160.8
120.01	0.202	1.18	541.6	0.193	1.17	493.5	174.6
130.00	0.204	1.28	577.1	0.195	1.27	529.0	187.1
140.00	0.209	1.38	593.7	0.200	1.38	545.6	193.0
150.00	0.211	1.42	598.6	0.202	1.42	550.5	194.7
160.00	0.215	1.45	605.2	0.206	1.44	557.1	197.0
170.00	0.217	1. 4 8	615.4	0.208	1.47	567.3	200.7
180.00	0.219	1.53	620.3	0.210	1.52	572.2	202.4
190.00	0.224	1.60	625.1	0.215	1.59	577.0	204.1
200.00	0.227	1.60	632.2	0.218	1.59	<i>584.1</i>	206.6
205.00	0.229	1.68	652.3	0.220	1.67	604.2	213.7
220.00	0.238	1.79	661.4	0.229	1.78	613.3	216.9
230.00	0.250	1.80	670.3	0.241	1.79	622.2	220.1
240.00	0.258	1.87	683.9	0.249	1.86	635.8	224.9
250.00	0.269	1.97	719.7	0.260	1.96	671.6	237.5
260.00	0.280	2.09	746.7	0.271	2.08	698.6	247.1
270.00	0.300	2.21	770.2	0.291	2.21	722.1	255.4
280.00	0.312	2.35	791.8	0.303	2.34	743.8	263.0
290.00	0.316	2.47	810.3	0.307	2.47	762.2	269.6
300.00	0.320	2.60	830.9	0.311	2.59	782.8	276.9
310.00	0.323	2.73	848.9	0.314	2.72	800.9	283.2
320.00	0.325	2.86	862.8	0.316	2.85	814.8	288.2
330.00	0.329	2.98	879.4	0.320	2.98	831.3	294.0

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the small shearbox apparatus)
Set of single stage tests - tested in accordance with BS 1377:1990:Part 7: Clause 4 (procedure 4.5.4)

TEST DATA - SHEARING

Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

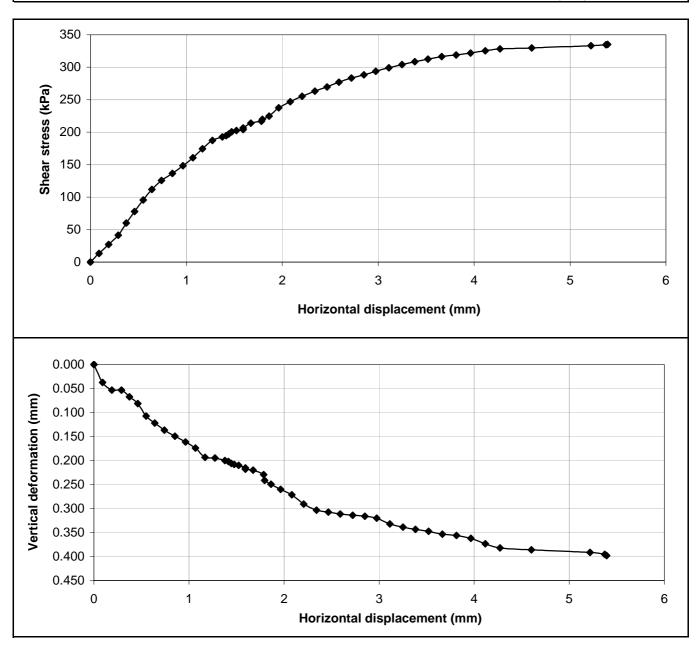
Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

SPECIMEN 3 Normal stress (kPa) 600

	Record	led data		(Calculated dat	ta	
Elapsed	Vertical	Horizontal	Horizontal	Vertical deformation	Horizontal	Horizontal	Shear stress
time	disp.	disp.	force	vertical delormation	disp.	force	Sileai siless
(mins)	(mm)	(mm)	(N)	(mm)	(mm)	(N)	(kPa)
340.00	0.341	3.12	893.8	0.332	3.11	845.7	299.1
350.00	0.348	3.26	907.4	0.339	3.25	859.4	303.9
360.00	0.352	3.39	920.4	0.343	3.38	872.3	308.5
370.00	0.356	3.53	931.3	0.347	3.52	883.3	312.4
380.00	0.362	3.67	943.0	0.353	3.66	894.9	316.5
390.00	0.365	3.82	950.3	0.356	3.81	902.2	319.1
400.00	0.371	3.97	958.3	0.362	3.96	910.3	321.9
410.00	0.382	4.12	967.5	0.373	4.12	919.5	325.2
420.00	0.391	4.28	975.8	0.382	4.27	927.8	328.1
430.00	0.395	4.61	981.1	0.386	4.60	933.0	330.0
440.00	0.400	5.23	990.1	0.391	5.22	942.1	333.2
450.00	0.404	5.38	994.4	0.395	5.38	946.4	334.7
<i>4</i> 52.50	0.407	5.40	995.6	0.398	5.39	947.5	335.1

DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the small shearbox apparatus)
Set of single stage tests - tested in accordance with BS 1377:1990:Part 7: Clause 4 (procedure 4.5.4)
TEST DATA - SHEARING


Project location Cecina Nord - Cecina (LI)

Project reference TECNA snc Sample depth 22.50/23.00

Borehole number 1 Sample type Undisturbed cohesive

Sample number 4 Specimen orientation Vertical

SPECIMEN 3 Normal stress (kPa) 600

Tested	Dott. Di Pumpo	Checked	Dott.ssa Sfalanga	Approved	Prof. Carmignani
Date	06/05/2015	Date	05/06/2015	Date	N° 5369/2015

Università degli Studi di Siena CGT - Centro di GeoTecnologie

Laboratorio di Meccanica delle Terre

PROVA DI CONSOLIDAZIONE EDOMETRICA AD INCREMENTO DI CARICO Eseguita secondo la Norma ASTM D 2435

IMPOSTAZIONE DATI

Cantiere	Cecina Nord		
Progetto	Tecna S.n.c.	Numero Campione	4
Numero Sondaggio	1	Profondità prelievo (m)	22.50

Descrizione provino	Limo sabbioso argilloso.			
Metodo preparazione	Trimming mediante tornietto			
Peso spec. dei grani	2.72	Stimato / misurato	Determinato in conformità con ASTM D 5550	

Rapporto leva	(**:1)	10.0
---------------	--------	------

Sequen	Sequenza dei passi di carico				
Numero	Pressione	Massa			
passo	applicata				
	(kPa)	(kg)			
Precarico	N/A	-			
1	13	0.25			
2	25	0.50			
3	50	1.00			
4	100	2.00			
5	200	4.00			
6	400	8.01			
7	800	16.01			
8	1600	32.02			
9	800	16.01			
10	400	8.01			
11	200	4.00			
12	100	2.00			
13	50	1.00			
14	25	0.50			
15	13	0.25			
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					

6 1 1 60 2		Metodo di prova
Carta da filtro ?	$ \checkmark $	○ Method A ● Method B

Misure iniziali		
Diametro interno anello (mm)	50.00	
Peso anello (g)	60.22	
Peso provino + anello (g)	142.07	
Altezza provino (mm)	20.00	
Sezione provino (mm²)	1963.5	
Volume provino (cm³)	39.3	
Peso provino (g)	81.85	
Volume parte solida (cm³)	24.8	
Altezza equivalente parte solida (mm)	12.64	

Contenuto d'acqua da trimming		
Peso terreno umido + tara (g)	64.48	
Peso terreno secco + tara (g)	54.98	
Peso tara (g)	17.76	
Contenuto d'acqua (%)	25.5	

Letture iniziali		
Lettura iniziale trasduttore (mm)	0.000	
Carico di rigonfiamento (kPa)		
Lettura finale trasduttore (mm)	0.000	

Misure finali	Provino intero	O Provino parziale	
Peso provino umid	o + anello + tara (g)	167.19	
Peso provino secco	156.50		
Peso tara (g)	28.79		
Peso provino secco	67.49		
Contenuto d'acqua	(%)	15.8	

RAPPORTO DI PROVA

Cantiere	Cecina Nord		
Progetto	Tecna S.n.c.	Numero Campione	4
Numero Sondaggio	1	Profondità prelievo (m) 22.5
Descrizione provino	Limo sabbioso argilloso.		
Metodo preparazione	Trimming mediante tornietto		
Peso spec. dei grani	2.72 (Determinato in conformità con ASTM D 5550)		
Condizioni di prova	Contenuto d'acqua		

Pressione di sovraconsolidazione (kPa)

Carico di rigonfiamento (kPa) N/A
Variazione altezza provino prima del primo gradino (mm) 0.000

CONDIZIONI INIZIALI	
Altezza (mm)	20.00
Diametro (mm)	50.00
Contenuto d'acqua ottenuto da trimming (%)	25.5
Contenuto d'acqua misura diretta (%)	21.3
Densità secca (Mg/m³)	1.72
Peso secco unitario (kN/m³)	16.8
Indice dei vuoti	0.583
Grado di saturazione (%)	99

CONDIZIONI FINALI	
Contenuto d'acqua (%)	15.8
Densità secca (Mg/m³)	1.90
Peso secco unitario (kN/m³)	18.6
Indice dei vuoti	0.430
Grado di saturazione (%)	100

Commenti / variazioni delle procedure:: VA 323				

RAPPORTO DI PROVA

Cantiere Cecina Nord

Progetto Tecna S.n.c. Numero Campione 4

Numero Sondaggio 1 Profondità prelievo (m) 22.5

todo di misura			Logaritmo del tempo	
Fase di carico	Durata gradino di carico	Altezza a fine gradino	Altezza a fine consolidazione primaria	Coefficiente di consolidazione
(kPa)	(hh:mm)	(mm)	(mm)	c _v (mm²/sec)
N/A - 12.5	24:09	19.84	-	-
12.5 - 25	24:01	19.68	19.69	1.31E-02
25 - 50	88:52	19.43	19.49	4.42E-02
50 - 100	24:35	19.16	19.19	3.20E-02
100 - 200	24:15	18.80	18.86	7.29E-02
200 - 400	24:02	18.36	18.42	7.62E-02
400 - 800	24:07	17.81	17.90	9.55E-02
800 - 1600	70:54	17.17	17.28	7.50E-02
1600 - 800	24:10	17.20	-	-
800 - 400	24:20	17.25	-	-
400 - 200	24:13	17.36	-	-
200 - 100	07:18	17.49	-	-
100 - 50	16:21	17.68	-	-
50 - 25	06:06	17.83	-	-
25 - 12.5	66:01	18.07	-	-

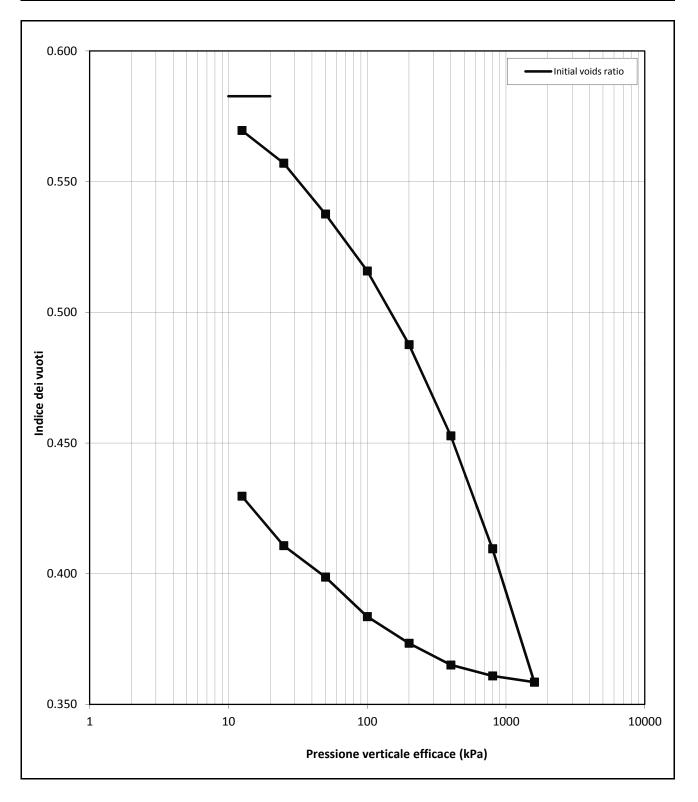
Rapporto di Prova

Cecina Nord Cantiere Cliente Tecna S.n.c. Numero Campione Numero Sondaggio Profondità prelievo (m) 22.50 - 23.00 Verbale Accettazione 323 Data inizio prova 28/04/2015 Numero di Certificato 5360/2015 Data fine prova 18/05/2015

Gradino	Fase di carico	ε	е	М	C _v	K
	kPa	%		MN/m ²	mm²/sec	m/sec
1	12.5	0.83	0.569	-	-	-
2	25	1.62	0.557	1.58	1.31E-02	8.12E-11
3	50	2.85	0.537	2.03	4.42E-02	2.13E-10
4	100	4.22	0.516	3.64	3.20E-02	8.63E-11
5	200	6.00	0.487	5.62	7.29E-02	1.27E-10
6	400	8.21	0.452	9.07	7.62E-02	8.24E-11
7	800	10.94	0.409	14.65	9.55E-02	6.39E-11
8	1600	14.16	0.358	24.81	7.50E-02	2.97E-11
9	800	14.01	0.491			
10	400	13.75	0.365			
11	200	13.22	0.373			
12	100	12.58	0.383			
13	50	11.62	0.398			
14	25	10.86	0.410			

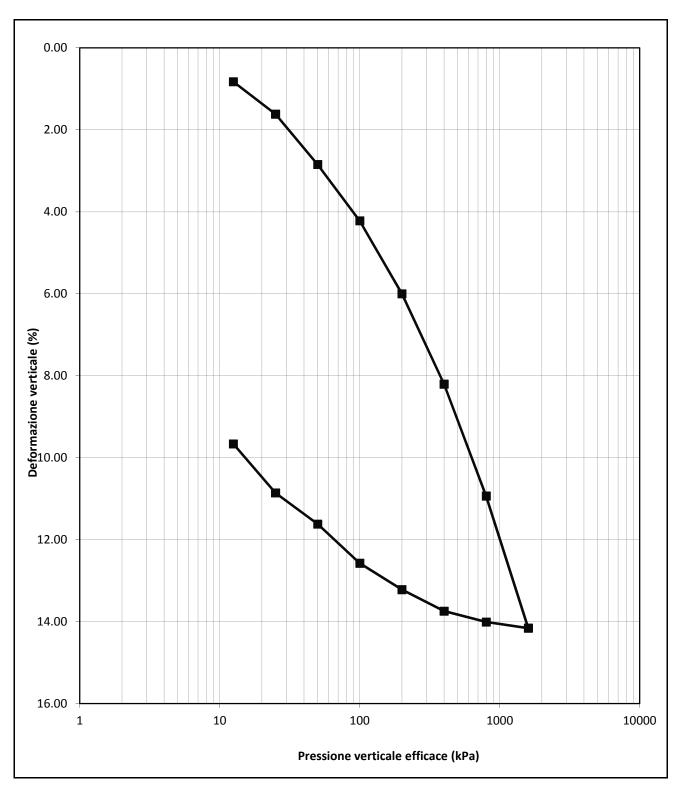
Commenti:

Il presente certificato è costituito da 14 pagine

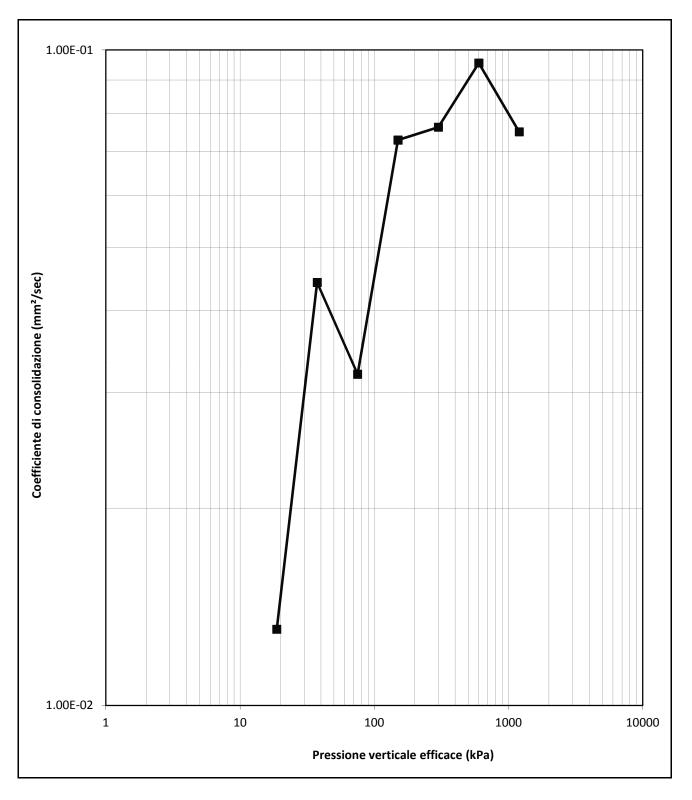

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	04/06/2015	Data	04/06/2015

RAPPORTO DI PROVA

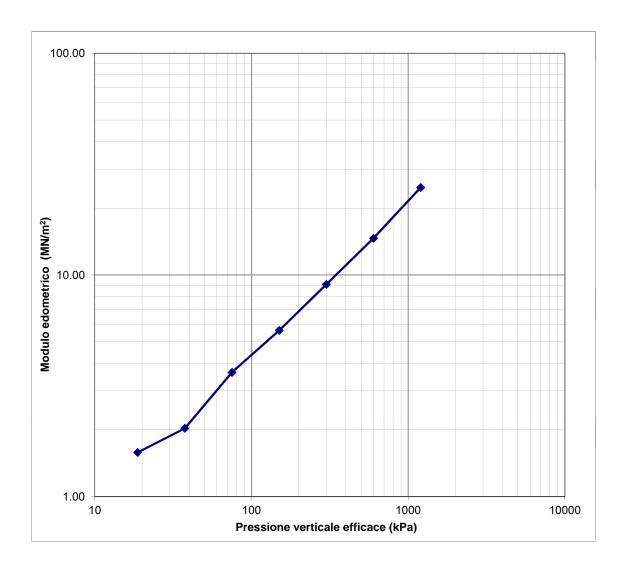
Cantiere Cecina Nord


Progetto Tecna S.n.c. Numero Campione 4

Numero Sondaggio 1 Profondità prelievo (n 22.5

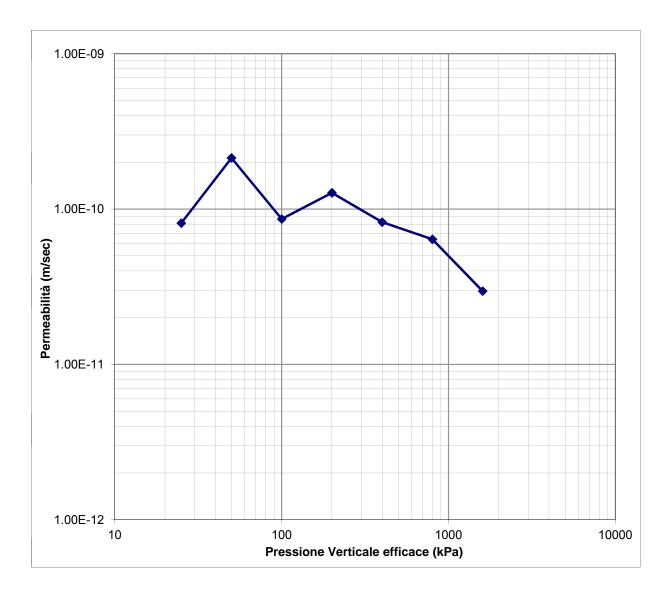

RAPPORTO DI PROVA

Cantiere	Cecina Nord	
Progetto	Tecna S.n.c.	Numero Campione 4
Numero Sondaggio	1	Profondità prelievo (n 22.5



RAPPORTO DI PROVA

Cantiere Cecina Nord
Progetto Tecna S.n.c. Numero Campione 4
Numero Sondaggio 1 Profondità prelievo (n 22.5



Cantiere	Cecina Nord			
Cliente	Tecna S.n.c.	Numero Campione	4	
Numero Sondaggio	1	Profondità prelievo (m)	22.50 - 23.00	
Verbale Accettazione	323	Data inizio prova	28/04/2015	
Numero di Certificato	5360/2015	Data fine prova	18/05/2015	

Controlla	to Dott.ssa Sfalanga	Approvato Prof. Carmignani
Data	04/06/2015	Data 04/06/2015

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione 4	
Numero Sondaggio	1	Profondità prelievo (m) 22.50 - 23.00	
Verbale Accettazione	323	Data inizio prova 28/04/2015	
Numero di Certificato	5360/2015	Data fine prova 18/05/2015	

Controllato	Dott.ssa Sfalanga	Approvato Prof. Carmignani
Data	04/06/2015	Data 04/06/2015

Rapporto di Prova

Cantiere	Cecina Nord	
Cliente	Tecna S.n.c.	Numero Campione 4
Numero Sondaggio	1	Profondità prelievo (m) 22.50 - 23.00
Verbale Accettazione	323	Data inizio prova 28/04/2015
Numero di Certificato	5360/2015	Data fine prova 18/05/2015

Gradino 1	12.5 kPa
dt	dH
min	mm
0.054	0.027
0.083	0.030
0.129	0.032
0.201	0.033
0.323	0.036
0.512	0.039
0.811	0.047
1.287	0.053
2.043	0.063
3.248	0.076
5.166	0.091
8.211	0.100
13.055	0.107
20.760	0.122
33.001	0.137
52.475	0.145
83.433	0.155
132.655	0.161
210.922	0.169
335.367	0.177
533.229	0.181
847.835	0.183
1348.054	0.189
1449.135	0.192

Gradino 2	25 kPa
dt	dH
min	mm
0.051	0.233
0.083	0.233
0.135	0.235
0.201	0.236
0.320	0.238
0.509	0.243
0.809	0.249
1.288	0.255
2.045	0.262
3.250	0.271
5.167	0.278
8.211	0.284
13.057	0.293
20.759	0.302
33.003	0.315
52.475	0.334
83.433	0.353
132.655	0.365
210.921	0.372
335.365	0.380
533.229	0.386
847.836	0.388
1348.056	0.389
1440.873	0.391

ΓΛ I.D.
50 kPa
dH
mm
0.411
0.412
0.417
0.423
0.430
0.434
0.446
0.453
0.463
0.477
0.492
0.513
0.537
0.557
0.572
0.583
0.596
0.611
0.617
0.620
0.626
0.628
0.635
0.641

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani	
Data	04/06/2015	Data	04/06/2015	

Rapporto di Prova

Cantiere	Cecina Nord	
Cliente	Tecna S.n.c.	Numero Campione 4
Numero Sondaggio	1	Profondità prelievo (m) 22.50 - 23.00
Verbale Accettazione	323	Data inizio prova 28/04/2015
Numero di Certificato	5360/2015	Data fine prova 18/05/2015

Gradino 4	100 kPa
dt	dH
min	mm
0.054	0.701
0.082	0.707
0.128	0.717
0.205	0.724
0.328	0.735
0.512	0.744
0.811	0.754
1.286	0.762
2.043	0.768
3.248	0.778
5.165	0.798
8.211	0.827
13.055	0.849
20.756	0.874
33.002	0.893
52.475	0.906
83.431	0.918
132.659	0.925
210.921	0.935
335.365	0.95
533.229	0.962
847.833	0.971
1348.053	0.976
1474.979	0.976

Gradino 5	200 kPa
dt	dH
min	mm
0.051	1.024
0.084	1.031
0.129	1.04
0.202	1.052
0.322	1.059
0.511	1.068
1.042	1.079
1.285	1.097
2.045	1.127
3.249	1.15
5.164	1.182
8.211	1.212
13.056	1.246
20.759	1.276
33.001	1.299
52.474	1.317
83.431	1.336
132.656	1.343
210.923	1.348
335.366	1.352
533.228	1.36
847.833	1.369
1348.056	1.38
1454.796	1.38

Oradina C	400 kDa
Gradino 6	400 kPa
dt	dH
min	mm
0.051	1.456
0.083	1.462
0.139	1.475
0.205	1.486
0.323	1.5
0.508	1.519
0.927	1.53
1.286	1.56
2.044	1.596
3.248	1.632
5.166	1.665
8.21	1.701
13.057	1.742
20.759	1.78
33.004	1.801
52.475	1.821
83.434	1.832
132.658	1.839
210.924	1.851
335.367	1.865
533.231	1.881
847.836	1.89
1348.053	1.897
1441.801	1.897

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	04/06/2015	Data	04/06/2015

CantiereCecina NordClienteTecna S.n.c.Numero Campione4Numero Sondaggio1Profondità prelievo (m)22.50 - 23.00Verbale Accettazione323Data inizio prova28/04/2015Numero di Certificato5360/2015Data fine prova18/05/2015

Gradino 7	800 kPa
dt	dH
min	mm
0.052	1.969
0.085	1.981
0.153	1.993
0.202	2.011
0.321	2.028
0.512	2.053
0.812	2.087
1.286	2.118
2.046	2.141
3.251	2.203
5.166	2.234
8.211	2.286
13.054	2.326
20.757	2.371
33.002	2.416
52.473	2.437
83.434	2.447
132.656	2.458
210.922	2.468
335.364	2.481
533.228	2.49
847.832	2.497
1348.053	2.512
1446.933	2.515

Gradino 8	1600 kPa
dt	dH
min	mm
0.05	2.599
0.083	2.612
0.133	2.621
0.203	2.635
0.322	2.659
0.511	2.698
0.811	2.733
1.286	2.756
2.047	2.801
3.248	2.859
5.182	2.918
12.733	2.95
13.058	3.016
20.757	3.056
33.001	3.082
52.476	3.105
83.432	3.123
132.657	3.136
210.924	3.152
335.364	3.162
533.228	3.173
847.833	3.194
1348.052	3.216
2143.405	3.224

Gradino 9	800 kPa
dt	dH
min	mm
0.051	3.232
0.084	3.23
0.129	3.228
0.202	3.226
0.322	3.224
0.509	3.222
0.81	3.219
1.287	3.215
2.209	3.212
3.249	3.208
5.166	3.207
8.211	3.206
13.056	3.206
20.759	3.206
33.003	3.206
52.472	3.206
83.434	3.205
132.654	3.205
210.922	3.205
335.365	3.205
533.228	3.205
847.834	3.205
1348.052	3.203
1450.264	3.202

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	04/06/2015	Data	04/06/2015

Rapporto di Prova

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	4
Numero Sondaggio	1	Profondità prelievo (m)	22.50 - 23.00
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5360/2015	Data fine prova	18/05/2015

400 kPa
dH
mm
3.169
3.169
3.166
3.163
3.162
3.161
3.158
3.153
3.148
3.145
3.142
3.138
3.135
3.134
3.133
3.132
3.131
3.13
3.127
3.122
3.119
3.119
3.117
3.116

Gradino 11	200 kPa
dt	dH
min	mm
0.051	3.1
0.083	3.098
0.129	3.096
0.202	3.095
0.322	3.091
0.509	3.089
0.809	3.087
1.424	3.08
2.044	3.071
3.25	3.064
5.164	3.053
8.211	3.038
13.058	3.026
20.757	3.02
33.005	3.018
52.475	3.015
83.431	3.012
132.657	3.008
210.924	3.004
335.363	3.001
533.227	2.998
847.832	2.998
1348.056	2.996
1453.047	2.995

Gradino 12	100 kPa
dt	dH
min	mm
0.051	2.977
0.083	2.973
0.129	2.969
0.204	2.964
0.323	2.96
0.508	2.956
0.824	2.952
1.285	2.945
2.051	2.942
3.417	2.938
5.164	2.931
8.211	2.922
13.057	2.916
20.757	2.902
33.005	2.887
52.474	2.877
83.431	2.871
132.657	2.864
210.924	2.857
335.363	2.854
437.761	2.848

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	04/06/2015	Data	04/06/2015

Cantiere	Cecina Nord		
Cliente	Tecna S.n.c.	Numero Campione	4
Numero Sondaggio	1	Profondità prelievo (m)	22.50 - 23.00
Verbale Accettazione	323	Data inizio prova	28/04/2015
Numero di Certificato	5360/2015	Data fine prova	18/05/2015

Gradino 13	50 kPa
dt	dH
min	mm
0.051	2.829
0.083	2.826
0.129	2.824
0.204	2.822
0.323	2.817
0.512	2.812
0.811	2.808
1.287	2.803
2.047	2.796
3.262	2.786
5.166	2.773
8.212	2.765
13.055	2.757
20.757	2.747
33.002	2.736
52.473	2.713
83.432	2.696
132.658	2.680
210.924	2.662
335.366	2.652
533.231	2.644
847.833	2.640
980.731	2.638
0.000	0.000

Gradino 14	25 kPa
dt	dH
min	mm
0.050	2.628
0.083	2.628
0.129	2.626
0.201	2.625
0.321	2.623
0.510	2.621
0.946	2.620
1.285	2.618
2.050	2.614
3.293	2.610
5.166	2.603
8.210	2.589
13.057	2.579
20.759	2.562
33.003	2.544
52.475	2.535
83.432	2.510
132.655	2.494
210.924	2.485
335.366	2.478
365.890	2.476

Gradino 15	12.5 kPa
dt	dH
min	mm
0.051	2.457
0.083	2.457
0.128	2.457
0.203	2.456
0.323	2.456
0.511	2.456
0.810	2.456
1.288	2.456
2.045	2.454
3.262	2.452
5.191	2.447
8.213	2.443
13.058	2.437
20.757	2.425
33.006	2.407
52.474	2.382
83.430	2.355
132.657	2.329
210.921	2.302
335.363	2.281
533.232	2.266
847.834	2.255
1348.053	2.234
_	_

Controllato	Dott.ssa Sfalanga	Approvato	Prof. Carmignani
Data	04/06/2015	Data	04/06/2015

INDAGINE GEOFISICA DI SISMICA ATTIVA CON METODOLOGIA MASW E PASSIVA DI TIPO HVSR

Ubicazione: Loc.Acquerta

Comune Riparbella (PI)

Committente: Tecna - Geoeco Progetti s.r.l.

Poggibonsi 15/04/2015

Relazione Tecnica

1 - Premessa

In data 10/04/2015 su incarico della Tecna s.n.c. e per conto della Geoeco Progetti s.r.l., è stata eseguita un'indagine geofisica acquisendo un profilo sismico con la metodologia MASW.

L'indagine, a supporto di uno studio geologico, è ubicata in Loc. Acquerta Comune di Riparbella (PI) (fig. 1)

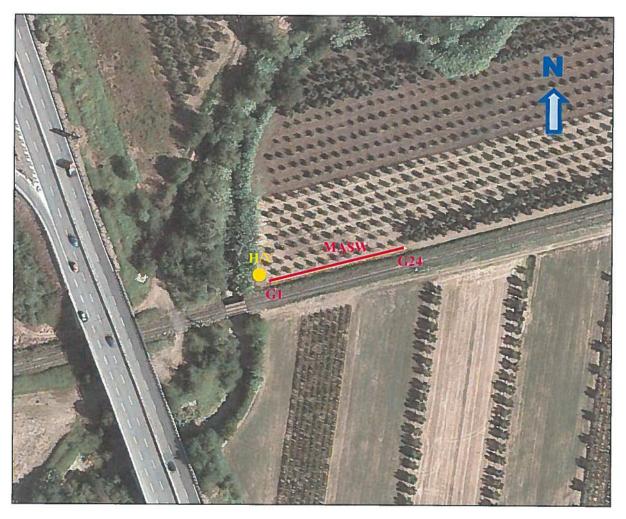


FIG. 1: UBICAZIONE DELLE INDAGINI

Il modello sismico monodimensionale costituisce l'aspetto principale sia nella stima degli effetti sismici di sito che nella definizione dell'azione sismica di progetto, in quanto consente di conoscere l'incidenza delle locali condizioni stratigrafiche nella modifica della pericolosità sismica di base (amplificazioni di natura litologica). Ciò permette una corretta progettazione strutturale in relazione alle condizioni del sito, (O.P.C.M. 3274 e s.m.i; D.M. 14.09.2005; D.M. 14.01.2008).

2-Indagine MASW

2.1 - Metodologia ed esecuzione delle indagini

La prova MASW, messa a punto nel 1999 da ricercatori del Kansas Geological Survey (Park et al., 1999) permette di determinare in modo dettagliato l'andamento della velocità delle onde sismiche di taglio (o onde S) in funzione della profondità attraverso lo studio della propagazione delle onde superficiali o di Rayleigh.

Il metodo di indagine MASW è un "metodo attivo", le onde superficiali sono prodotte da una sorgente impulsiva disposta a piano campagna e vengono registrate da uno stendimento lineare composto da numerosi ricevitori posti a breve distanza (distanza intergeofonica).

Il metodo consente di ottenere una curva di dispersione nel range di frequenza compreso tra 4.5 e 40 Hz e fornisce informazioni sulla parte più superficiale di sottosuolo (fino a circa 20-30 m di profondità in funzione della rigidezza del suolo).

2.2 - Caratteristiche delle apparecchiature e principi generali dell'indagine

L'indagine Masw per l'analisi delle onde superficiali è stata eseguita utilizzando la strumentazione classica della prospezione sismica a rifrazione disponendo sul terreno 24 geofoni secondo un array lineare con spaziatura pari a 2,5 m., compatibilmente con le condizioni logistiche e gli spazi disponibili del sito. Per ottenere una buona risoluzione in termini di frequenza, sono stati utilizzati geofoni da 4.5 Hz.

Come sistema di energizzazione una mazza di 10 Kg battente su piattello metallico. Per aumentare il rapporto segnale/rumore è stata eseguita la somma di più energizzazioni (processo di stacking).

Sono state fatte 2 acquisizioni. Successivamente si è provveduto ad elaborare tutte e 2 le misurazioni valutando la coerenza dei risultati e la loro qualità.

Di seguito si riassumono le principali caratteristiche della strumentazione utilizzata ed i criteri di acquisizione della prova MASW attiva:

Strumentazione e caratteristiche dell'indagine

- 1 Unità di acquisizione sismografo Echo 12/24
- 24 Geofoni verticali "con f = 4.5 Hz
- 1 Cavo sismico L = 57.5 m
- 1 Sorgente Mazza di 10 kg battente su piattello metallico
- Spaziatura tra i geofoni: 2,5 m
- Distanze sorgente 1° e 24° geofono: 5 e 10 m.
- Tempo di registrazione: 1.0 s

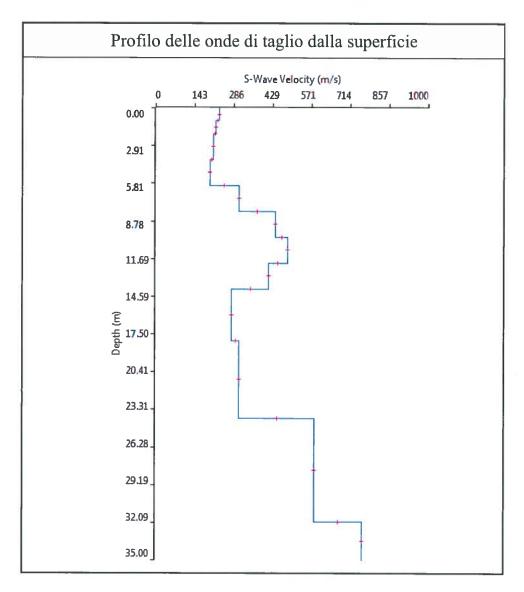
2.3 – Elaborazione dati

I dati sperimentali, acquisiti in formato SEG-2, sono stati trasferiti su PC per l'interpretazione attraverso l'utilizzo di uno specifico programma di elaborazione (Swan).

Tale programma permette di elaborare i dati acquisiti sia con il metodo attivo che con quello passivo.

L'analisi delle onde S con tecnica MASW viene eseguita mediante la trattazione spettrale del sismogramma, cioè a seguito di una trasformata di Fourier, che restituisce lo spettro del segnale.

In questo dominio, detto dominio trasformato, è semplice andare a separare il segnale relativo alle onde S da altri tipi di segnale, come onde P o propagazione in aria. L'osservazione dello spettro consente di notare che l'onda S si propaga a velocità variabile a seconda della frequenza dell'onda stessa, questo fenomeno è detto dispersione ed è caratteristico di questo tipo di onde.


La teoria sviluppata suggerisce di caratterizzare tale fenomeno mediante una funzione detta curva di dispersione, che associa ad ogni frequenza la velocità di propagazione dell'onda. Tale curva è facilmente estraibile dallo spettro del segnale poiché essa approssimativamente passa sui massimi del valore assoluto dello spettro.

A questo punto la curva di dispersione sperimentale deve essere confrontata con quella relativa ad un modello sintetico che verrà successivamente alterato in base alle differenze riscontrate tra le due curve, fino ad ottenere un modello sintetico a cui è associata una curva di dispersione teorica coincidente con la curva sperimentale.

Dall'inversione della curva di dispersione si ottiene il seguente modello medio di velocità delle onde sismiche di taglio con la profondità, rappresentativo dell'area investigata (stendimento complessivo di circa 57.5 m).

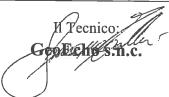
Thickness	Depth	Vs	Vp	Poisson	Density
1	0	232	464	0.333	1.8
1	1	219	438	0.333	1.8
2	2	210	420	0.333	1.8
2	4	198	396	0.333	1.8
2	6	303	606	0.333	1.8
2	8	439	877	0.333	1.8
2	10	483	965	0.333	1.8
2	12	413	825	0.333	1.8
4	14	278	556	0.333	1.8
6	18	305	610	0.333	1.8
8	24	582	1163	0.333	1.8
	32	758	1515	0.333	1.8

Tabella 1: modello sismico monodimensionale.

2.4 - Calcolo della Vs₃₀

A partire dal modello sismico monodimensionale riportato, è possibile calcolare il valore delle Vs30, che rappresenta la velocità di propagazione entro 30 m di profondità delle onde di taglio.

Per il calcolo delle Vs30 si fa riferimento alla seguente espressione, riportata nel D.M. 14.09.2005 e nel D.M. 14.01.2008 ("Norme tecniche per le costruzioni"):


$$V_{s30} = \frac{30}{\sum_{i=1}^{n} H_i / V_i}$$

dove Hi e Vi indicano lo spessore (in m) e la velocità delle onde di taglio dello strato i-esimo, per un totale di N strati presenti nei 30 m superiori.

Utilizzando la formula sopra riportata, considerando la quota della fondazione a partire dal piano campagna attuale, si ottiene il seguente valore Vs30 = 323 m/s a cui corrisponde la categoria di suolo di fondazione di tipo C (si veda la tabella seguente).

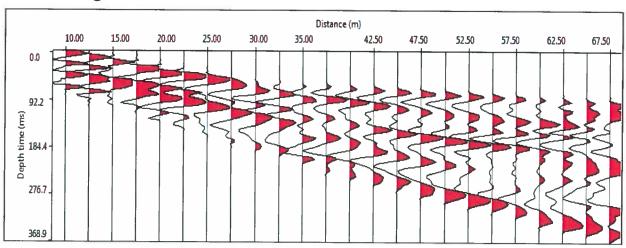
Tabella: Categorie di suolo di fondazione(D.M. 14-09-2005; D.M. 14-01-2008)

CAT.	DESCRIZIONE PROFILO STRATIGRAFICO	P	ARAMET	'RI
		Vs 30 m/sec.	N spt	Cu (Kpa)
A	Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di VS30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.	> 800	-	-
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, con spessori superiori a 30 m, caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità	360-800	>50	>250
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità	180-360	<50	70-250
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità	<180	<15	<70
E	E - Terreni dei sottosuoli dei tipi C o D per spessori non superiori a 20 m, posti sul substrato di riferimento (con VS > 800 m/s).			

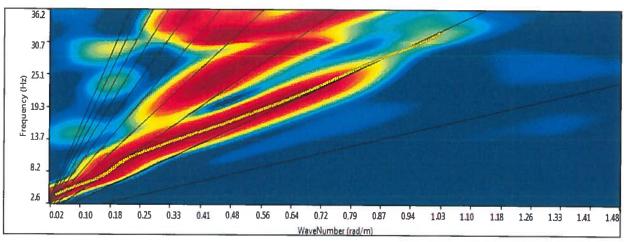
3 – Misura con metodologia a stazione singola (HVSR)

Accanto alle tecniche basate sull'impiego di array sismico esistono altre tecniche basate sull'uso di una singola stazione di misura. In questo caso vengono misurate le vibrazioni ambientali nelle tre direzioni dello spazio attraverso un unico sensore tridirezionale posto sulla superficie del terreno. In particolare viene valutato il rapporto di ampiezza fra le componenti orizzontali e verticali del moto (metodo HVSR ovvero "Horizontal to Vertical Spectral Ratios") [Bard., 1998]. Analizzando misure di questo tipo è possibile identificare le modalità di vibrazione del terreno. In particolare è possibile individuare la frequenza f di questa vibrazione definita di "Risonanza". Sapendo che in generale esiste una relazione semplice fra f, lo spessore della parte più soffice del terreno e la velocità media delle onde sismiche nel sottosuolo (ricavata per esempio dai metodi passivi ad antenna, o attivi come Masw e Rifrazione), attraverso le misure HVSR è possibile risalire allo spessore di questo strato.

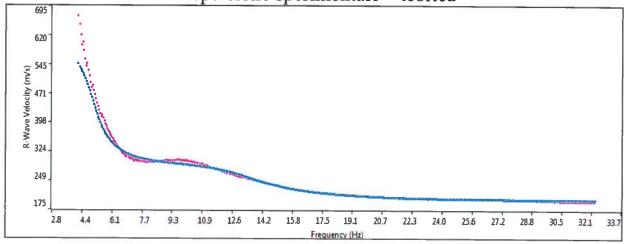
Risultati

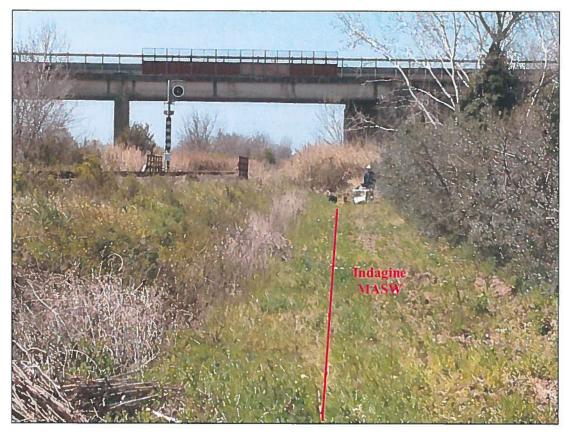

La misura H/V realizzata è servita a definire le frequenze di risonanza del sottosuolo in maniera tale da prevenire, al verificarsi di un evento sismico, possibili interferenze risonanti, tra il suolo e le strutture da realizzare.

La curva ricavata, mette in evidenza due picchi relativi a livelli superficiali, alla frequenza di 23.75 Hz con ampiezza pari a 2.68 e alla frequenza di 6.81 Hz con ampiezza 1.78 ricadente nel campo delle frequenze di interesse ingegneristico. A bassissima frequenza 0.3 Hz $A_0=2.15$ si riscontra un ulteriore picco che segna il passaggio al substrato profondo.


Il Tecnico:

ALLEGATI ELABORATI GRAFICI PROVA MASW


Sismogramma


Spettro F –K

DOCUMENTAZIONE FOTOGRAFICA

T1 Loc. Acquerta

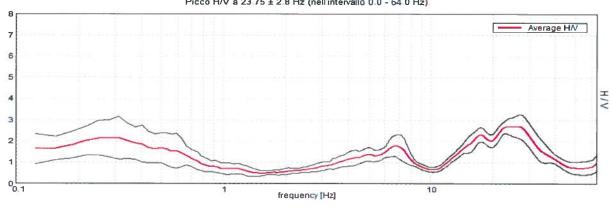
Strumento: TZ3-0001/01-13

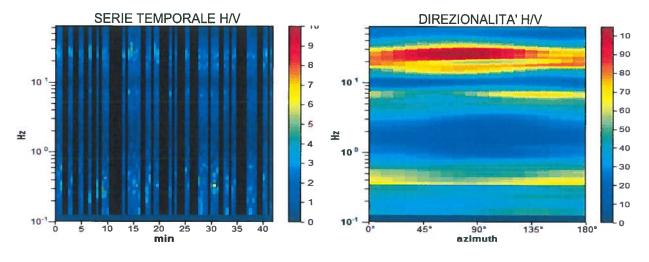
Inizio registrazione: 10/04/15 13:48:27 Fine registrazione: 10/04/15 14:30:27

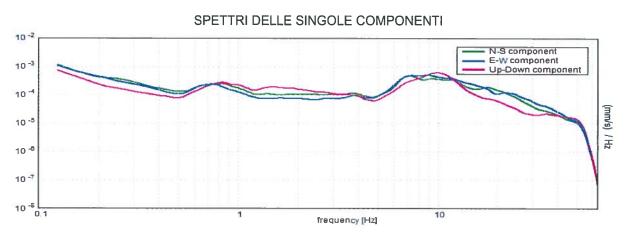
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

Durata registrazione: 0h42'00". Analizzato 52% tracciato (selezione manuale)


Freq. campionamento: 128 Hz Lunghezza finestre: 30 s

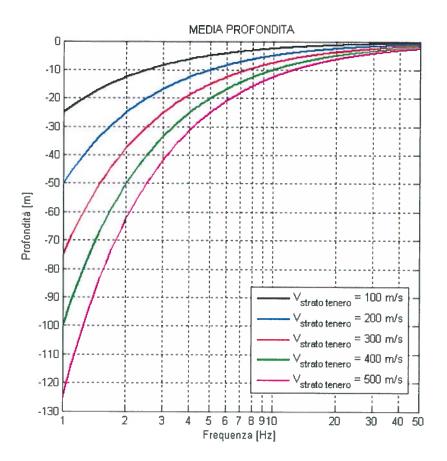

Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Picco H/V a 23.75 ± 2.8 Hz (nell'intervallo 0.0 - 64.0 Hz)

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].


Picco H/V a 23.75 ± 2.8 Hz (nell'intervallo 0.0 - 64.0 Hz).

	vrebbero risultare soddisfatti]		
$f_0 > 10 / L_w$	23.75 > 0.33	OK	
$n_c(f_0) > 200$	31350.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 1141	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5\text{Hz}$			
	er un picco H/V chiaro		
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
[Almeno 5 su Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$		ОК	
[Almeno 5 su Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	OK OK	
[Almeno 5 su	6 dovrebbero essere soddisfatti] 13.219 Hz		
[Almeno 5 su Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 13.219 Hz 37.094 Hz	OK	NO
[Almeno 5 su Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	13.219 Hz 37.094 Hz 2.70 > 2	OK	NO NO

L _w	lunghezza della finestra
n_{w}	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \varepsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f =	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f_0) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{HN}(f^+) < A_0/2$
$\sigma_A(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Va	alori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \operatorname{per} \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

Relazione tipica frequenza - Vs - profondita

Tabella indicativa spessori

f_0 (Hz)	h (m)
< 1	> 100
1-2	50 - 100
2 - 3	30 - 50
3 - 5	20 - 30
5 - 8	10 - 20
8 - 20	5 - 10
> 20	< 5